Category Archives: Morse Code

A memorable Bakers Mountain SOTA activation with the Elecraft KX2 & PackTenna 9:1

Besides Lane Pinnacle, there’s been one SOTA summit, in particular, I was eager to activate this year: Bakers Mountain (W4C/WP-007).

I practically grew up in the shadow of this little outlier mountain in Catawba County, North Carolina–my home was only a couple miles away as the crow flies and it has always been a bit of a landmark in my childhood stomping grounds.

Growing up, the land in/around Bakers Mountain was basically off-limits and privately owned. In the late 1980s, one of the land owners gave a large tract of land to the county to protect it from development (which started booming in the area around that time).

In June, 2002, while I was living in the UK, Catawba County open up the 189 acre park and its 6 miles of trails to the public.

I love Bakers Mountain park. Even though the mountain isn’t terribly tall (1780 feet/543 meters ASL) parts of the trail system are fairly strenuous. When I want to escape and clear my head, the Bakers Mountain trails are the perfect medicine.

Bakers Mountain: What’s in a name?

An interesting tidbit about Bakers Mountain that I learned from one of the park rangers: it was originally called “McBride Mountain in the late 1700s, but as more German settlers moved into the area, German family names became predominant.

The Baker family had large tracts of land in/around the mountain and, locally, people started referring to it as “Baker’s Mountain” sometime in the 1800s and the name stuck.

Officially, the name of the mountain is “Bakers Mountain” although, I suppose, it should have been called “Baker’s Mountain” or maybe “Bakers’ Mountain.” An apostrophe was never added, though.

It’s a source of confusion for those who make maps and refer to the mountain. In the SOTA database, it’s referred to as “Baker Mountain.” That is incorrect, of course, but the SOTA database is likely built upon one of the topographic map databases where it’s incorrectly labeled.

So there you go. Tuck away this bit of trivia and sound like a local next time you’re in Catawba County!

Now where was I? Oh yes…

So on Wednesday, May 19, 2021, I packed my Elecraft KX2 and PackTenna 9:1 UNUN antenna in the GoRuck GR1, and hit the Bakers Mountain trail system.

The weather was perfect, although the humidity was incredibly thick that day.

Mountain Laurels were in bloom and flanked portions of the trail.

I took the main red-blazed loop trail.

The trail is very well-marked and maintained with maps posted throughout.

At one point, you’ll happen upon the old home site.

The trail has a few steep sections, but overall is pretty moderate.

There’s no missing the summit trail.

Following the orange mountain top trail will take you to a gazebo and observation deck near the summit.

Keep in mind, though, that this is not the true summit of Bakers Mountain and isn’t close to the 25M SOTA activation zone. Still, the views are fantastic here, so take a breather and soak up the Catawba valley.

Click the pano image below to enlarge in a new window.

To find the trail to the real summit, you must follow the path crossing under the power lines near the observation area–you can’t miss it. While the public isn’t encouraged to take this path–and it is not a part of the Bakers Mountain trail network–a park ranger told me that the current owners don’t mind the odd SOTA activator following the trail to the summit.

The path–since it’s not a part of the public trail–is a bit overgrown. Follow this path until you intersect an overgrown narrow access road. At the intersection take a left and this will lead you to the true summit. The ring road around the summit is well within the AZ.

I found a little spot to set up among the trees on the summit. No views, but it was the perfect space to deploy the PackTenna 9:1 UNUN!

Gear:

On The Air

This being my first time activating Bakers Mountain, of course I made a real-time, real-life, no-edit video (see link below). Sorting out a way to set up the camera position took me longer than deploying the antenna and unpacking the radio! It can be a real challenge on a stony mountain summit.

The KX2 paired beautifully with the PackTenna 9:1 UNUN. I got a great match on 20 meters.

I started calling “CQ SOTA” and spotted myself on the SOTA network using the SOTA Goat app.

My first contact was SA4BLM in Sweden–I almost fell off of my rock!

Next, I worked KR7RK in Arizona, AE0XI in South Dakota, and HA9RE in Hungary! All in eight minutes.

Wow!

Next, I moved up to the 17 meter band where I logged AC1Z in New Hampshire, F4WBN in France, and KT5X in New Mexico.

Finally, I moved down to 40 meters where I worked K3TCU in Pennsylvania, K8RAT in Ohio, W4KRN in Virginia, and K4MF in Florida.

My total activation time was about 25 minutes.

QSO Map

Here’s the QSO Map plotting out my QRP contacts. I must say, that modest PackTenna did a lot with my 5 watts! That and some good Bakers Mountain mojo! 🙂

Video

Here’s my real-time, real-life, unedited video of the entire activation from start to finish:

Click here to view on YouTube.

That was fun!

When I hike at Bakers Mountain, I add spur trails and connectors to make it as long as can in the time frame I have. The trip back to the car was actually a longer hike than it was to the summit.

But I had a spring in my step.

I was absolutely chuffed that my first activation of this particular summit was so exciting and fun. It still blows my mind what can be accomplished with 5 watts and a modest wire. I can’t wait to go back again.


Do you enjoy QRPer?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Xiegu X5105 CW Memory Keying: I could really use some guidance…

X5105 owners, I could really use your help!

[UPDATE: Thank you for the assistance! See procedure below.]

You may recall that I’m evaluating the X5105 on loan from Radioddity. Overall, I’ve been pretty impressed with this budget transceiver when I’ve taken it to the field.

I need a mystery solved though: How in the heck does one set up and use CW memory keying–?

The owner’s manual has been no help and I actually feel like it’s referencing an earlier firmware version.

In fact, from what I gather reading the earliest manual, it used to be super simple to both record and play back CW memory keyer messages. There were three memories labeled RE1, RE2, and RE3 that you could activate with three of the four quick menu buttons under the display. I would love that sort of accessibility, but I gather it’s no longer an option.

I’ve yet to find an explanation for using CW memory keying in the current version of the X5105 firmware.

Please comment if you could describe the procedure or point me to documentation that explains it. I could really use your guidance! Thank you in advance!


Update: How to use X5105 CW Memory Keying

Many thanks to Gary (KE2YK) and many others for the following procedure:

To configure the 10 CW memory messages:

    1. Go to Menu 3 by pressing the MENU button until 3 appears beneath the power meter on the display.
    2. Hit MSG
    3. Select MSG number with VFO (Tuning Knob)
    4. Press the EDIT button
    5. Scroll through letters / numbers with the VFO and hit INS for each selection
    6. When letter/number selections are complete,  press SAVE
    7. Repeat for each custom message and when done, hit QUIT

To play the preset messages:

    1. Go to Menu 5 by pressing the MENU button until 5 appears beneath the power meter on the display.
    2. Select DIGI
    3. Select CWDEM from mode choices (leftmost button in menu 5) by pressing the button until CWDEM appears
    4. Repeatedly hit MSG to select specific message number
    5. Press PTT on body of rig or perhaps press PTT on mic. This will send the selected message one time.

To exit, hit MENU for other menu selections

No doubt, for CW memory playback, this is cumbersome. In fact, if Xiegu doesn’t update the firmware with an easier way to initiate playback (as they had in the original firmware version), I see that I’ll only use memory position 1 for calling CQ. I wouldn’t want to go through the trouble of selecting a different message for playback in the field and in the middle of an exchange. That’s just too clunky to be practical.

I’ve sent a note to Xiegu about this. With any luck, perhaps they’ll improve the firmware for easier operation.

Thank you again, readers for sorting out the mystery!

Enjoying a casual trailside activation with the Xiegu X5105 and PackTenna 9:1 Unun

I love day hiking with radios.

When I pack all of my radio gear in a field kit that is compact enough to fit in a small day pack, it forces me to only take the essentials. This, in turn, makes for a quick deployment and pack-up.

I think this is one of the reasons I find Summits On The Air so appealing.

On Tuesday, May 18, 2021, I had a hankering to fit in a hike and, of course, play radio. I also wanted the option to fit in two activations, so needed a simple and short hike to minimize time.

Tuttle Educational State Forest (K-4861)

I decided to head to Tuttle Educational State Forest–one of my favorite accessible POTA sites–because their two mile loop trail was just what the doctor ordered. In fact, I knew exactly where I wanted to set up on the trail.

Tuttle is rarely busy–especially on a Tuesday afternoon.

I arrived on site and, as I was pulling my backpack out of the car, I was greeted by one of the Tuttle park rangers. He was incredibly nice and provided me with even more ideas of places to set up in the future along the trail and trail extensions. We must have chatted for 15-20 minutes–he had a number of questions about amateur radio and I never miss an opportunity to be an ambassador for both ham radio and POTA/WWFF.

Gear:

On The Air

The hike was amazing and, besides park rangers, I had the entire site to myself. About 1.5 miles into the hike, I found the spot I earmarked for this activation: a little open area with three wood benches on the side of the path.

This particular deployment reminded me how thankful I am that I discovered the Arborist Throw Line last year. I had the PackTenna deployed in three minutes.

It was so…effortless.

I decided to take the Xiegu X5105 out for another activation. Radioddity sent this to me on loan for a full evaluation and review. The previous day, I activated the Blue Ridge Parkway with the X5105.  I wanted to see how many activations I could accomplish off of one charge of the X5105’s internal battery, so after the BRP activation, I didn’t re-charge the battery.

As insurance at Tuttle, I brought along my trusty QRP Ranger LiFePo4 battery pack and hooked it up to the X5105. If the X5105’s internal battery died on me, it would be easy to simply turn on the QRP Ranger’s power switch and hop right back on the air.

I started one of my real-time, real-life activation videos (see below), then called CQ on 40 meters.

Maybe that quick antenna deployment was foreshadowing the activation, because in the span of 13 minutes, I logged 11 stations all on 40 meters.

I was very pleased to work P2P (Park To Park) contacts my friends Steve (KC5F) and Scott (KN3A). Thanks, guys, for hunting me!

Here’s my log:

I didn’t even move up to 30 or 20 meters after working the string of contacts on 40 meters because Tuttle is far from being a rare site and I wanted to fit in one more activation that afternoon.

The X5105’s internal battery easily powered the rig for the entire activation (perhaps a total time of 15 minutes). I suppose I’ll have to take it to yet another park on this same charge!

Packing up was nearly as quick as deployment. I owe thanks to one of my YouTube Channel subscribers for suggesting that I pack the Arborist Throw Line pouch by winding figure eight bundles of line on my hand (much like I do with antenna wire) and stuffing them in the pouch one bunch at a time. This saved me a lot of time.

While the portable throw line pouch isn’t as quick to pack as the throw line cube, this method made it a cinch!  I can’t find who originally made the suggestion, but I’m grateful–thank you!

Video

Here’s a link to the full activation video:

Photos

During my loop hike, I snapped a few photos (click to enlarge):


Well hello there, little fella’!

I’m most grateful to the late Ms. Tuttle for leaving this amazing park for all to enjoy. Her legacy protects this land for all future generations.

When you’re doing a park or summit activation, don’t forget to stop and take in a good dose of nature and the outdoors.

It does us all a world of good.

More X5105 thoughts

This second activation had me warming up a bit more to the X5105. I do like its size, and I think it’s a good rig for CW ops.

CW operation is very pleasant, actually, and keying feels natural. I was impressed that the battery held for a second activation, even though this was a very short one.

Again, I think the internal speaker audio leaves a bit to be desired–I dislike the audio splatter I hear at higher volumes–but for $550? It’s really hard to be critical.

During this activation, I still hadn’t learned how to program CW memory keying. A YouTube subscriber recently described the process and it seems overly cumbersome and much more complicated than it was in an earlier firmware version.  I’m going to contact Xiegu about this. Unless I’m missing something, it really holds the radio back from being pretty stellar on CW for the field op.

Readers, if you own the X5105 and can describe the best way to use CW memory keying, please comment with directions! I’d really appreciate it!

Thank you

Thank you once again for reading through this field report and perhaps watching the activation video.

I’d also like to thank the readers and subscribers who’ve recently supported me on Patreon and via PayPal. I am humbled and honored.

Thank you.


Do you enjoy QRPer?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Pairing the TX-500 and MPAS 2.0 on a beautiful morning activation of the Blue Ridge Parkway

On the morning of May 10, 2021, I had a hankering to head to the Blue Ridge Parkway for a quick park activation.

I had a particular spot in mind–one that’s only two miles or so from my QTH as the crow flies. The only wrinkle in my plan was that we were expecting rain all morning and at our house we were in thick fog and light, steady rain.

Normally when I have these conditions, I look for a sheltered site, but I thought it might be a great time to take out the TX-500 since it’s weather-resistant. Why not, right?

I packed the lab599 Discovery TX-500, my Chameleon MPAS 2.0 vertical, and my Elecraft T1 antenna tuner to pair the two. I also brought along some rain gear.

Although the activation site is close to home as the crow flies, it actually takes about 30 minutes to drive there. By the time I reached the site, the skies were mostly clear and the sun was shining! This time of year, it reminds me of living in the UK: if you don’t like the weather, just wait five minutes.

Gear:

On The Air

This was very much a road side activation. The spot I chose isn’t an overlook–although it did provide amazing views–it was simple a pull-off.

This is where antennas like the MPAS 2.0 are so useful: they are self-supporting and very quick to deploy. Since I was set up right off the road, I also appreciate using verticals rather than wire antennas since the antenna and throw line aren’t in the way of others who might choose to park in the same pull-off.  I can easily deploy the counterpoise and feedline so that it’s out of the way.

As with most park activations, I started on 40 meters CW and only operated 5 watts.

I quickly racked up five contacts on 40 meters, then the band fell silent.

I moved up to 30, then 20, down to 80, back to 60 and 40 again.

About 30 minutes had passed since I was last on 40 meters, so new hunters were checking the bands. I snagged a total of seven more contacts in about eleven minutes.

Obviously, 40 meters was the only band open that morning!

A quick note about 80 meters

I get a lot of questions from readers and YouTube subscribers about my use of the 80 meter band during the daytime.

I go into more detail about this in the video, but contrary to what many think, 80 meters can be a very useful daytime band for POTA activators.

While it’s true that you’re not going to work DX on 80 meters during the daylight hours (else, highly unlikely), you can still work local and regional stations.

Keep in mind that POTA, WWFF, and SOTA activations aren’t about working DX. DX is fun and perhaps a personal goal, but it has nothing to do with success in achieving a valid activation.

Basically, any contacts–DX or local–will get you what is needed for a valid activation.

If, like me, you live in a part of the country where there are a concentration of park and summit hunters/chasers within a daytime 80 meter footprint, then hop on that band and give it a go!

I’m not sure how useful this might be for activations in sparsely populated areas like Montana or the Dakotas, for example, but along the east and west coast, 80 meters is your friend.

At this particular activation, I didn’t didn’t employ an efficient antenna for 80 meters. While I’ve made numerous 80 meter contacts on the CHA MPAS 2.0 in the past, it’s just not physically large enough to be efficient on that band.  The CHA Emcomm III Portable or another long wire antenna would have provided better results. But I knew that 40 meters and possibly 30 meters would be my best bet that day, so the MPAS 2.0 was a great choice.

Again: don’t forget about 80 meters. It’s helped me snag many an activation!

Video

Here’s my real-time, leal-life, no-edit video of the entire activation:

Click here to view on YouTube.

You might hear an audio pop when I’m keying on the TX-500. This is happening because I have the audio gain cranked up all the way for the video. While the speaker/mic can get quite loud, when I’ve got it located so far from the camera mic, I run it at 100% volume to be heard. I recently changed my CW T/R recovery time from 100ms to 400s which eliminated most of the audio popping.

Thank you for reading this field report! I hope you’re getting an opportunity to take your radios outdoors this week!


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Field Report: Pairing the Yaesu FT-817ND, LDG Z-100 Plus, and CHA Emcomm III Portable at Tuttle Educational State Forest

On my way back to the QTH, April 21, 2021, I popped by Tuttle Educational State Forest for what I hoped would be a relatively quick activation.

The previous day I performed a SOTA activation of The Pinnacle and was still feeling the high from that brilliant solar flare propagation experience. Although I knew the solar flare effects were long gone over 24 hours later, I wanted to take in a quick hike and play a little radio: Tuttle was the perfect place for both.

Plus, Tuttle Educational State Forest is such a peaceful quiet place (that is, when no one is burning up rounds at the nearby shooting range). The park is never crowded and it has wide open spaces for playing radio.

My plan was to do a quick activation, then hit their longest trail loop through the forest.

Gear:

Tuttle Educational State Forest (K-4861)

Another reason I stopped at Tuttle was to test the LDG Electronics Z-100 Plus ATU.

In the spirit of full transparency, LDG sent this unit to me at no cost when they became a sponsor of the SWLing Post and QRPer.com recently (you may have noticed their ads in the right sidebar). While I was really curious how well the Z-100 Plus pairs with the Icom IC-705–using the supplied command cable–I didn’t have a (charged) IC-705 with me. Instead, I pulled out the trusty Yaesu FT-817ND and hit the air!

The Z-100 Plus is RF-sensing, so a command cable is never needed and the ATU will pair with any transceiver.

To use the Z-100 Plus with the FT-817ND, I only needed to hit the Tune button on the front of the ATU then send a string of dits or dashes for it to initiate a match search.

It was no surprise that the Z-100 Plus easily found matches with the Emcomm III Portable.

I started calling CQ on 80 meters and quickly worked my buddy WD8RIF in Ohio.

After a few minutes, I moved up to the 40 meter band where I worked four stations in about four minutes, then the band was quiet for a few minutes.

I then moved up to the 30 meter band and worked four more stations in about seven minutes then silence again.

At this point, I only needed one more contact to validate my POTA activation to have ten stations logged, so I moved up to the 20 meter band and in about four minutes worked two more.

If I didn’t have a limited amount of time and a strong desire to fit in a hike that afternoon, I might have called CQ a while longer on 20 meters and possibly even 17 meters, but I called QRT after a total of 36 minutes on the air.

Herein lies the advantage of having a portable ATU: it gives you frequency agility. On days when propagation is rough, and contact roll in slowly, a good ATU will allow you to find matches on multiple bands so your transceiver will be happy pushing RF through a non-resonant antenna length. I love resonant antennas, but it’s hard to beat the flexibility an ATU gives you.

[My next video, by the way, will feature the Z-100 Plus connected to the IC-705. ]

QSOmap

Here’s how my contacts looked that day on a QSOmap:

Video

Here is one of my real-life, unedited videos of the entire activation:

I was so busy making the activation video, I didn’t think about taking photos of my rig.

During the hike, however, I did snap these two:

It’s fun returning to the same parks and seeing how the flora changes with the seasons. There’s always something new to see.

I think the next time I activate Tuttle, it might be from the trail–I located a couple of spots that would be ideal for a park bench activation! That might make it feel a bit more like a SOTA activation (although, there are no summits in this forest).

Thanks again for reading through this activation report. Please comment with any questions or feedback. Very curious what LDG Z-100 Plus owners think of this ATU.


Do you enjoy QRPer?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

My path to learning CW and activating parks and summits

One of the most common questions I receive on my YouTube Channel is on the topic of how I learned CW and started doing CW field activations.

I’ve often told new hams or those who want to learn CW that there is no “one path” to learning CW. Mine was certainly not a straight path, and I believe very few are.

I will state up-front that there are a number of resources out there for learning CW, including apps, programs, audio recordings, and clubs.

One resource with a loyal following is the Long Island CW Club.  I’ve heard so many rave about their program, it’s certainly worth exploring.

My Path to CW

I first learned about amateur radio in high school from a Curtis Mathis TV repairman house call. As he diagnosed an issue with our living room television, I held the flashlight and probably asked dozens of questions about the components inside. He eventually looked at me and said, “Have you ever heard about amateur radio?

After showing him the shortwave listening station I’d put together in my bedroom (all centered around a Zenith Transoceanic), he suggested I stop by a local RadioShack and pick up study material for the Novice license.

In 1988, the first steeping stone into amateur radio required learning enough CW/Morse Code to pass a simple five word per minute test along with a written exam.

I eventually purchased Gordon West’s exam prep package which included the book and cassette tapes to help with my studies.

I was in high school at the time, though, and involved in a lot of extracurricular activities including my high school marching band, scouts, I volunteered at our local community theatre, was in a brass quintet, played bass in the high school jazz band, and I even played Tuba for our local college band. I had too much on my plate already. Then, I did my undergraduate studies including a year in France and put off my license even longer.

After graduating college/university in 1996, I worked briefly at a RadioShack and found the time to start studying again. Through the encouragement of my good friends and Elmers Mike (K8RAT) and Eric (WD8RIF), I studied the written material for my Novice and Technician exams, and also the cassette tapes for my 5 word per minute CW exam.

In early 1997, I took and passed all three components to snag my (then) “Technician Plus” license.

I planned to learn 13 words per minute to pass my General class license, but the FCC actually dropped the code requirement altogether.  I passed my General in 1998 or 1999, and moved to Europe and the UK for a few years with my employer.

After moving back to the States, I tried to get back into CW, but again put it off thinking the learning curve would be too great.

Then in 2007, I had a break in employment and had free time at home. I pulled out those Gordon West tapes and worked through the entire course again.

The moment I could confidently copy all of the letters, all of the numbers, and a few abbreviations, I called my buddy Mike (K8RAT) and asked him to meet me on the air.

I was nervous, but I was communicating with a friend who was happy to slow down to 5 words per minute (not an easy task, mind you, when you’re used to 20WPM+!).

Mike and I had a daily morning QSO and that built my code speed up to 13-15 WPM in short order.

I learned that after your brain assimilates each Morse Code character, it’s then all about recognizing the sound of each character and abandoning any in-head translating of dits and dashes which slows you down. This is the ideal approach to any language: you need instant recognition to build speed. It’s not hard to do and, in fact, and our brains are wired to do this automatically.

After I started building confidence with code and doing 3 way 13 WPM ragchews with Mike and Eric on 80 meters, I started another huge project: building a house.

The house build took the better part of three years and it absorbed all of my time (that and my wife and I also had toddlers at home!).

We eventually moved into our house and I set up a permanent shack. I would occasionally hop on the CW bands, but usually just to test CW performance for transceiver and receiver reviews.   In other words, I let my CW skills slip again.

Parks On The Air

It wasn’t until last year (2020) during the pandemic that I decided to build my CW skills to a point that I could complete a Parks On The Air (POTA) CW activation.

What was the motivation?

1.) POTA and SOTA activators who schedule their activations can be automatically spotted via the Reverse Beacon Network (RBN). This means if you’re at a site that has no mobile phone coverage, the system may automatically spot and re-spot you from your CW CQ calls.  Since 60% of the sites I activate have no mobile phone or Internet coverage, this was a HUGE motivating factor.

2.) Let’s face it: CW is the ultimate mode for the portable operator. CW is simply more efficient and effective with your power output than voice modes like SSB, AM, or FM. Unlike modern digital modes, which are also more efficient than voice modes (think FT8/FT4), you need no special equipment or a computer as an interface.

3.) CW is a skill and, frankly, I wanted to improve that skill. I knew CW activations would be a wonderful motivator and excuse to practice.

Morse Runner

In May 2020, I started using a free program called Morse Runner to prepare for CW activation and potential pileups. Click here to read about my experience with Morse Runner.

Hunting

I also started hunting CW activators in the POTA program from home. The exchange is pretty simple, so it was easy to do. This also gave me the opportunity to learn common exchange communications and abbreviations.

Contests and DX

I started working DX stations in CW. As I mentioned in a previous post, the exchanges are very formulaic.

I also made a point of working CW stations in the 2020 ARRL Field Day and during the 2020 13 Colonies event.

My first CW activation

I’ll admit that I was nervous, but Hazel was pretty darn relaxed.

As I started to build a little confidence on the air–and before I had could talk myself out of it–on July 25, 2020, Hazel and I took my field radio kit to the Blue Ridge Parkway and I completed my first CW activation. Click here to read the details.

In short? It was actually a bit easier and more enjoyable than I had imagined.

Although I would get some butterflies at the start of the next few CW activations, CW quickly became my mode of choice. Why? For one thing, CW is a very narrow mode which means it’s super easy to find a clear frequency. CW also copes with QSB, QRN, and QRM much better than SSB. Frankly, there are also less LIDS on the CW bands.

There’s another reason that’s hard to explain, but I’ll try: when I operate in CW, I find that it takes my mind off of everything else going on in the world. When I’m listening to and sending code, it becomes my focus and somehow it’s very relaxing. I find it a bit of a refuge.

Finally, I have an appreciation of radio history and nostalgia so it’s fun to operate such a simple, early mode that’s still so incredibly effective.

What was your CW Path?

So there you go! CW is now my mode of choice. Even though I don’t even have one year of CW activations under my belt at time of posting, I operate it 95% of the time I’m in the field. I still love phone contacts–don’t get me wrong, I’m not a CW-only guy–but I prefer CW these days.

I would love to hear about your path to learning CW. What tools and resources did you use? Did you have any mentors that helped you along the way? Are you still learning CW? Please comment!

Could you activate a park or summit in CW only using a CW decoder and memory keyer?

The Xiegu G90 in CW Decode mode (note the text at the bottom of the display)

As more and more radio operators hit the field to activate parks and summits, many want to turn to CW to benefit from Reverse Beacon Network (RBN) spotting and also to take advantages of the inherent efficiencies of CW at QRP power levels.

Thing is, CW is a skill so there is a learning curve associated with it.

The learning curve is actually more modest than you might think, which is the reason there are so many new operators employing this earliest of communication modes.

A reader recently asked if he thought he could get away with doing a park activation for POTA using the built-in CW decoder in his transceiver and an external memory keyer pre-programmed with a wide variety of exchanges and signal reports. He even thought about using a keyboard-based keyer as opposed to paddles or a straight key.

The idea would be to get on the CW bands for experience as he’s learning CW. At present, he doesn’t know CW at all, but he’s starting to learn.

His question was simple, “Could I activate a park with this sort of setup?”

My reply? “Possibly. It would likely be frustrating.”

Before getting into a field activation, let’s talk about one area where even modest CW skills can be used to snag contacts.

Working short exchange DX in CW

There are a number of  DXers who effectively rely on CW skimmers, keyboard sending, and pre-programmed exchanges in order to work DX.

How do they do this? It’s simple, really:

DX exchanges are incredibly simple and formulaic.

For example, in order to work a typical DXpedition the only CW one really needs to know is what one’s own callsign sounds like in CW at a relatively high speed.

To work a DXpedition in CW, for example, I would only need to program the following two messages in my CW memory keyer:

  1. K4SWL” (my callsign)
  2. 5NN TU DE K4SWL” or ” K4SWL 5NN TU” or even simply “5NN TU

That’s it, really. Here’s how it would play out…

I simply press the memory button with my callsign to call the DXpedition.

When the DXpedition sends back my callsign and possibly a signal report (“K4SWL 5NN“), I then press the memory button with my reply (“5NN TU“).

My only skill would be knowing what my callsign sounds like in CW at 20-30 WPM. That’s actually very easy to learn.

The reason why this procedure is so easy is because you only need to recognize your own callsign in CW; the DXpedition at the other end is doing all of the hard work by picking callsigns from the pileup and replying.

Anyone could learn how to work these short DX exchanges in CW over a weekend. It’s not always as easy and straight-forward as the example above (sometimes, for example, the DX may only send back a portion of your callsign with a question mark)  but it is possible to work short exchange DX and DXpeditions without knowing much CW at all.

CW Skimmers vs. Built-in transceiver decoding

At home, you can also use powerful CW skimmers on your computer–sometimes via SDR applications–to decode CW across the bands.  In the field, you could also use a laptop or tablet to do the same thing. The Reverse Beacon Network (RBN) uses CW skimming to spot CW activators 24/7. It’s obviously pretty effective.

This particular reader was asking about using their transceiver’s built-in CW decoder along with pre-programmed CW exchanges.

I’ve reviewed numerous transceivers with built-in CW decoders. Some work better than others.

Transceivers decoders are typically pretty basic and not terribly adaptive. Some struggle with code that varies in speed–for example, it might  expect received code at the same speed your keyer is set to. That doesn’t always happen, of course.

Also, most transceivers will only interpret code that is completely tuned in properly–many have CWT and auto tuning functionality to center the frequency on the received signal.

If your transceiver likes the code speed and if you’re properly tuned in, you could get a very good read of the code being sent to you.

However, transceiver decoders (at present) will get confused by:

  • multiple signals (i.e. a CW pileup)
  • sloppy sending (junk in, junk out!)
  • signals that drift
  • and depending on the operator’s skill, straight keys, semi-automatic keys, and side-swipers (or “cooties”) can also confuse them

In other words, transceiver decoders are simple and typically are looking for standard, electronically-keyed code that’s properly tuned-in. They’re better at handling a rag-chew with a friend rather than the dynamic environment of multiple CW ops calling a site activation.

With this said, some transceivers are better at CW decoding than others. Your mileage will vary.

But the real rub?

When activating a site, you are the DX.

When you’re activating a park or summit, the burden of interpreting incoming callsigns falls on you. Built-in transceiver CW decoders are not good at pulling apart multiple callsigns being sent all at once. In fact, all of the transceivers I’ve used in the field only have one line of decoded text that scrolls across the screen.

If you activate a park and only one chaser/hunter calls you at a time, they’re spot on your frequency, and sending clean code, you probably could effectively use your transceiver’s CW decoder and pre-programmed messages to complete an exchange. This “ideal” situation would likely be fairly rare, in truth.

Your brain is a better

Your brain is much better at adapting, so there’s just no escaping building your CW skillset if you want to activate a park, summit, island, or any site where you are the DX.

Good news is, there are a number of applications, courses, and programs out there to help you build CW skills.

One place to start is the Long Island CW Club. I’ve heard so many success stories from their program. (Please comment with suggestions that have helped you!)

And when you’ve learned just enough CW to hop on the air, I highly recommend using the free Morse Runner application to practice handling small pileups.

Also? Chase first!

Before attempting a CW activation and getting frustrated by the experience, I would try chasing at home first using your transceiver’s decoder.

Chasing is a situation where you can make the decoder work better for you, because you’re only focusing on one target signal (an activator) at a time.

I did a lot of chasing as I was working on my CW activation skills. I also chased ARRL Field Day contacts and made a 13 Colonies “Clean Sweep” employing a bit of CW. Since the CW exchanges were so formulaic, it wasn’t all that difficult.

Side Note: DMX-40

Ironically, as I was writing this article, I learned about a product made by the company PrepComm called the DMX-40. I believe a reader may have commented with a link at some point.

The DMX-40 is basically a 40 meter self-contained QRP transceiver designed to send and decode CW.  The idea behind the DMX-40 stems more from an emergency communications point of view: you won’t need to learn CW in order to use it during emergency or one-on-one communications.

I’m tempted to test the DMX-40 to see how well it works in the real world. So far, I haven’t seen a review where it’s truly put through the paces in real-time. I might ask the manufacturer to send me a loaner if there’s interest. Let me know in the comments if you think it might be worth reviewing.  I am curious if it would work for the odd CW rag-chew and/or chasing CW park and summit activators. I assume, based on the product description and specs, its CW decoder would be much more robust than, say, the decoder in my Elecraft KX2.

Summary

Being completely transparent here, I’ve had this article in my drafts folder for the past three or four weeks. I initially wrote it thinking it would be a pretty simple answer. In truth, though, I’ve never attempted a CW activation only using my transceiver’s decoder.

There may be some savvy operators who could make this work using a CW skimmer and keyboard-based keyer with macros, but I think it would be an operation in frustration. I think it would discourage me more than anything else.

I do think there’s a place for CW decoders. In fact, I found the one in my KX3 incredibly helpful as I started chasing CW signals on the air from home. I never completely relied on the decoder, I simply used it to confirm what I though I was hearing. It built my confidence.

In the end, I believe it’s easier to simply learn some CW. It’s not really that difficult and I firmly believe it’s good for your brain!

Comments?

Please comment if you regularly employ a CW decoder, have completed a field activation with one, or if you simply used one while learning CW. I would also love to hear from folks who use CW skimmers and what applications they use. Indeed, I’d love to hear any of your considerate thoughts on the topic.

SOTA and POTA Field Report from Mount Jefferson State Natural Area

On Monday, March 22, 2021, I performed three QRP field activations in one day. I started off the day with a visit to Three Top Mountain Game Land, and then headed to Mount Jefferson State Natural Area for a POTA and SOTA activation before heading to New River State Park.

When plotting my multi-site activation day, I picked Mount Jefferson because it’s a SOTA entity (W4C/EM-021). I only realized later that it’s also a POTA entity (K-3846). I mistakenly assumed Mount Jefferson was a county park rather than an NC state park.  To do both a POTA and SOTA activation simultaneously is ideal!

Mount Jefferson (W4C/EM-021)

This was my first visit to Mount Jefferson and, frankly, I wasn’t sure what to expect in terms of hiking.

The park itself is amazing! North Carolina parks never let me down.

The entrance is near the base of the mountain and very close to the town of West Jefferson. The park road climbs up the side of Mount Jefferson –there are a number of spots to park, hike, and picnic.

I had not checked the trail map in advance, but I had read that the summit trail was accessible from the parking and picnic area at the end (top) of the park road.

I hopped out of my car, grabbed my SOTA pack, and very quickly found the trail head.

The trail is impeccably maintained and wide enough for vehicle use (no doubt these trails double as access for tower maintenance on the summit).

The hike to the summit from the parking are was incredibly short–about .3 miles. Normally, I’d want a much longer hike, but since I was trying to fit three site activations in a span of four hours, I didn’t complain.

On top of the summit, one is greeted by a typical cluster of transmission towers.

While I appreciate checking out antennas and towers, these are never a welcome site because they can generate serious QRM, making a SOTA activation difficult.

I also found a park weather station on the summit. Nice!

I searched around and found a spot to set up well within the activation zone but giving me a bit of distance from the towers.

Gear:

My Yaesu FT-817ND was desperate to get a little SOTA action, so I decided to pair it with the Chameleon CHA MPAS Lite using the Elecraft T1 ATU to find matches.

After putting the FT-817 on the air, I was very pleased to hear that the nearby transmission towers and power lines weren’t causing any noticeable interference.  This was a very good sign because, frankly, propagation was very unstable that day and I had real concerns about being able to work stations on 40 meters.

I hopped on the air and quickly realized I’d forgotten to hook my external battery up to the Yaesu FT-817ND. This meant I was running something closer to 2.5 watts as opposed to a full 5 watts. I decided to attempt the activation without the external battery and add it if needed.

I started operating on 20 meters and was very pleased to quickly rack up a number of contacts. I could tell that most of these contacts were via SOTA because I recognized the calls and primarily SOTA chasers.

Within 11 minutes, I worked 10 stations on 20 meters in CW. I was very pleased with how quickly those QSOs rolled in and how easily I logged the four needed for a valid SOTA and 10 needed for POTA activation–all on 20 meters.

Next, I moved to 40 meters where I worked two stations and 30 meters where I worked one. For sure, 20 meters was a much stronger band than 40 and 30 turned out to be.

After working 13 stations, I packed up.

Obviously, 2.5 watts was plenty for this activation!

I would have loved to stay longer, but frankly, I needed to stick to my schedule because I had one more park to fit in that day! (More on that in a future post and video!).

Here’s my QSOmap for the Mount Jefferson activation:

And here’s my full log:

Video

Even though I was a bit pressed for time, I still made one of my real-time, real-life videos of the entire activation. I hope you enjoy:

Next up will be an activation of New River State Park. I hope to post this early next week.

Thank you so much for reading this report!


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Testing the new Chameleon Tactical Delta Loop (CHA TDL) antenna

Chameleon Antenna has sent me a number of their antenna systems to evaluate in the field over the past few months at no cost to me. I appreciate not only the opportunity to test these antennas, but to provide the company with my frank feedback.

As I’ve mentioned previously, Chameleon antennas are military grade and build here in the US (check out Josh’s tour of their factory).  You pay a premium price–compared to imported options–but their gear is built for performance, easy deployment, and longevity.

What has impressed me most about Chameleon gear is how flexible and modular it is. Their antenna systems are adaptable to almost any situation and always built around the idea of emergency communications.

Recently, Chameleon sent me their new CHA TDL or Tactical Delta Loop antenna. This vertical loop antenna has been designed to be portable, and tunable from 3.5 to 54.0 MHz (80-6M), but, as Chameleon points out,  “is most effective on the bands from 10.1 to 54.0 MHz (30-6M). ”

TDL deployment

If I’m being perfectly honest, I wasn’t sure what to expect this antenna to look like–in terms of size–once deployed, so I set it up in the front yard prior to taking it to the field.

Set up couldn’t have been more simple: attach the 17′ telescoping whips to the stainless steel spike (with one whip attached to the Hybrid Micro), extend the whip sections, then attach the loop wire to connect the tips of both whips.

It might have taken me four minutes to set up the TDL on the first go.

This antenna needs a little space  for sure: this isn’t one you could easily deploy in a dense forest, but it has a very flat profile vertically. I can’t think of a single park I’ve activated that couldn’t accommodate the CHA TDL.

I like to try to give gear a fair chance when I do evaluations and thought I’d wait until propagation was at least stable before taking the TDL to the field and making a real-time, real-life video (as I used it for the first time). But, frankly, I’m way to impatient to wait for the sun to play fair! Trial by fire…

Lake Norman State Park (K-2740)

On Monday (March 15, 2021) I packed up the CHA TDL and headed to Lake Norman; one of my favorite parks to play radio.

Gear:

Propagation left much to be desired that afternoon, but the weather was perfect.

I decided to pair the CHA TDL with my Icom IC-705. Since the CHA TDL requires an ATU, I connected the mAT-705 Plus.

NVIS on the low bands

I had no idea what to expect from the CHA TDL in terms of performance, but Chameleon notes that it provides Near-Vertical Incidence Skywave (NVIS) propagation on 40 and 80 meters. NVIS antennas are very popular for the military and for emergency communications since the propagation footprint is much closer to home than it might normally be.

NVIS is also a brilliant option for park and summit activators, especially if they’re activating in an area with a high density of park/summit chasers. For example, if you live and activate sites in the state of Maryland, employing a NVIS antenna might make your site more accessible to the DC metro area, Pennsylvania, Virginia, New York, Delaware, and New Jersey–regions that might otherwise be in the skip zone of your 40 meter signal.

On the air

Operating five watts CW, I started calling CQ POTA on 20 meters and snagged four stations in about seven minutes.

I was very pleased to work a station in California and one in Montana with five watts. (Though I need to check, this might have been my first MT station logged from a park.)

Next, I moved to 40 meters and was very curious if the TDL would provide me with proper NVIS propagation.

It did! One litmus test for me is when I work stations in Tennessee on 40 meters. Typically, I only log TN stations when on 80 meters or when I’ve configured one of my wire antennas for NVIS coverage.

Here are my logs from this 28 minute activation:

Here’s a QSOmap of the activation–the delineation between my four 20 meter contacts and eight 40 meter contacts is pretty evident:

Video

Here’s my real-time, real-life video of the entire activation which also shows how the CHA TDL easily fit in among trees:

In a future video, I’ll show how I deploy the CHA TDL.

Unfortunately, I left my tripod at home, so apologies for the viewing angle as I operated the IC-705.

Summary

This first test of the CHA TDL really couldn’t have gone better.

I was able to easily deploy it on sloping ground, among trees, in a state park, and snag both locals and QRP DX within a brief window of time on the air.  All this, while our local star tried its best to interfere.

In terms of construction, the TDL is what I would expect from Chameleon: military grade.

For park activators and Emcomm purposes, the CHA TDL makes for a convenient, portable NVIS antenna on 40 and 80 meters.

While I have lighter, smaller footprint antenna options for SOTA, I must admit I’m very curious how it might perform on 20 and 17 meters from the summit of a mountain. The idea of being able to rotate the antenna and change the propagation footprint is very appealing. I’ll save this experiment for a summit that doesn’t require hours of hiking, though, and one where I know I can jab the stainless steel spike in the ground (i.e. not on top of a rocky mountain).

Any negatives? When I first deployed the TDL at home, we were having 30+ MPH wind gusts. When the gusts shifted, it did move the antenna. This could be remedied pretty easily by using a bit of fishing line filament to tie off one side of the loop. With that said, I’m not sure I’d configure the TDL as a loop if I expected strong winds. Also, as I mentioned earlier, this might not be the best antenna to pack if you plan to include a multi-hour hike in your activation.

And herein lies the brilliant thing about Chameleon Antennas: If I packed in the CHA TDL and found that winds were strong on site, I would simply configure it as a vertical instead of a loop!

The CHA MPAS Lite vertical

The CHA TDL can easily be configured as a CHA MPAS Lite portable vertical: all it’s missing is a counterpoise wire which you can buy separately from Chameleon or, better yet,  just use some spare wire you have on hand!

Or, you could configure it as a random wire antenna by directly connecting a length of wire to the Hybrid Micro transformer.

That’s the thing about Chameleon HF Antennas: they can be configured so many different ways.

If you’re interested in the CHA TDL, I’d strongly encourage you to read though the user manual: it’s chock full of info and ideas. Click here to download as a PDF.

Next time I take the CHA TDL out, I think it’ll be to a summit where I’d like to see how it might perform on the higher bands with the ground sloping away from the antenna site.

Click here to check out the CHA TDL at Chameleon Antenna ($355 US shipped). 

SOTA Field Report: Activating Lane Pinnacle with the Elecraft KX2 and CHA MPAS Lite

I’ll let you in on a little secret. Don’t tell anyone, but I held off making my first Summits On The Air (SOTA) activation  until the stars aligned and I could activate one particular summit completely on foot from my QTH.

Last Thursday (February 25, 2021), my daughter and I hiked to Lane Pinnacle (W4C/CM-018) and performed my first Summits On The Air (SOTA) activation.

Why did I wait so long?

We live in the mountains of western North Carolina where (obviously) there are numerous SOTA summits to activate.

But I wanted Lane Pinnacle to be the first.

Why? Well, it’s the one summit I can hike to directly from my house with my daughter Geneva (K4TLI) and enjoy a proper father/daughter day hike.

I had planned to do this hike last year, but I injured my ankle and let’s just say that the hike to Pinnacle isn’t a beginner’s run.  I knew my ankle would need to properly heal before the journey.

This is also more of a late fall to very early spring hike due to the amount of thick foliage we knew we would have to mitigate. It’s so much easier to keep your bearings when there are no leaves on the trees nor on the green briar!

Last Thursday, I felt confident that my ankle was up to the task. We had a break in the weather as well with moderate temps and lots of sunshine (this, after several days of rain). We knew things could be muddy and slippery, but we also knew that with my busy schedule this might be our last chance to hit the summit before the mountains green up.

So we packed a lunch, plenty of water, radio gear, and (of course) emergency/first-aid kits while trying to keep our backpacks as light as possible.

Hitting the trail!

The first part of the hike requires trailblazing to a ridge line. The distance is short, but the ascent is steep (about 800 feet).  We hike this portion regularly, so knew how to pick our path and avoid the steeper, slippery bits.

K4TLI lead the way!

On the ridge line, we intersected an established single track trail and enjoyed the hike across a couple of smaller summits until we intersected the Blue Ridge Parkway.

If I’m being honest, I had some serious concerns that the trailhead to Lane Pinnacle would be closed. This portion of Blue Ridge Parkway is currently closed to motor vehicles (for the winter season) and I had noticed a number of “trail closed” signs on other portions of the parkway.

Guessing this may be a type of shelf fungus?

If the trail was closed, I planned to simply activate the parkway and Pisgah National Forest for the POTA program. I never hike on trails that have been closed by the park service because I like to obey the rules and I certainly don’t want to paint SOTA activators in a bad light.

When we crossed the parkway, we were incredibly pleased to see that the trailhead was open.

The ascent from the parkway to Lane Pinnacle is about 1,000 feet (305 meters) of elevation gain over a pretty short distance. The trail we were taking–turns out–was primitive. It basically lead us straight up the slope (no switch backs following lines of elevation, for example) and simply fizzled out about one third of the way up.  We could tell it isn’t traveled often at all (although we did find a massive fresh bear track in the mud on the trail!).

Obligatory SOTA report “foot in snow” photo. 🙂

I bushwhacked our way to the top–at times, the slope was about 45 degrees and slippery, but we easily found our way to the summit where our goat path intersected the Mountains To Sea trail.

We found an amazing overlook and took in views of the Bee Tree Reservoir as we ate our lunches.

Geneva grabbed her dual-band HT and made the first summit contact with our friend, Vlado (N3CZ) on 2 meters FM.

On the Air

I knew there would be short trees on the summit of Lane Pinnacle, but I also knew that I wanted to get on the air as soon as possible to allow extra time for our hike home.

I did pack a super compact wire antenna, but opted instead for the Chameleon CHA MPAS Lite vertical. I paired it with my Elecraft KX2.

Gear:

The great thing about the CHA MPAS Lite is how quick it is to deploy–it might have taken me all of three minutes.

Since it was noon, I decided to start on the 20 meter band. I found a clear frequency, started calling “CQ SOTA” with the KX2 memory keyer, and spotted myself to the SOTA network via the excellent SOTA Goat app on my phone.

I had also scheduled my activation on the POTA website in advance because Lane Pinnacle is in Pisgah National Forest (K-4510). My buddies Mike (K8RAT) and Eric (WD8RIF) were also helping to spot me in the unlikely event I wouldn’t have cell phone service on the summit.

Within 20 seconds of submitting the spot to the SOTA network I had a CW pileup.

In all of my hundreds of field activations, I can’t think of a single time that I generated a CW pileup on 20 meters in such short order with five watts and a vertical.

The first station I logged was N1AIA in Maine. The second station was F4WBN in France.  The race was on!

It took every bit of CW skill I had to pull apart the stations on 20 meters. It was so much fun!

I eventually worked Spain and all of the west coast states (WA, OR, and CA) and numerous stations throughout the Rockies and Midwest.

I then moved to 40 meters where I worked stations in the Mid-Atlantic, Ohio Valley, and in the Southeast.

In the end, I had to keep my total time on the air short because I wanted to take my time finding a path from the summit back down to the Blue Ridge Parkway.

In 30 minutes I worked 30 stations. I’m not a seasoned CW operator, so this was quite the accomplishment.

Here’s a QSOmap of my contacts:

I was chuffed! What a fabulous activation to kick off my SOTA adventures.

Video

This time, I did not make a video of the actual activation. For one thing, I didn’t want to carry a folding tripod for the camera and I didn’t want to ask my daughter to film it either. I wanted to keep things as simple as possible to make the most of the airtime I had.

I did, however, make a short video before and after. You can check it out on my YouTube channel:

Hiking home

I really wish we could have stayed on the summit for an hour longer making contacts, but I knew it would be wise to allow extra time to descend Lane Pinnacle especially since I knew a front was moving through later that day.

I decided it would be easier to do my own bushwhacking back down the mountain rather than try to retrace our previous steps. We took our time and I followed elevation lines to make it slightly less steep. Since I took a more south westerly descent, when we reached the parkway, we had to hike north to reach the original trailhead.

The rest of the hike was totally uneventful and incredibly fun. The weather held and we took in the views, the wildlife, and invaluable father/daughter time.

That was the first strenuous hike I had done in months due to my ankle, so let’s just say I was feeling “spent” after our 6.5 hour adventure taking in 2,000 feet (610 meters) of elevation to the summit.

I knew it was bad when I even dreaded walking upstairs to take a shower.  I think I remember telling my wife, “I’m never building a house with stairs again!”

More SOTA!

Now  that I’ve got Lane Pinnacle in the books, I’m ready to start hitting the summits! I’ve got a lot of pent up SOTA energy!

My goal is to activate a total of ten this year. That may sound like a modest number, but since at this point I’m less interested in “drive-up” summits, it’s more difficult to fit SOTA summits into my schedule than, say, typical POTA/WWFF parks.

In fact, I’ve already plotted my next SOTA activation and hope to do it within the next couple of weeks. It’s also a meaningful (to me) summit.

How about you?

Are you a SOTA activator or are you planning your first SOTA activation soon? Please comment!