Tag Archives: Guest Posts

Mike rediscovers radio and POTA “gently reopened the door to an amazing hobby”

Many thanks to Mike (W6MVT) for sharing the following guest post:

Back to Ham Radio for a Year – A Brief Reminiscence

by Mike (W6MVT)

This story will sound like many I have heard over the past year, but I will write it nonetheless as a note of gratitude.

Last March COVID had just restricted our activities and I was wondering how to spend my time. I had received my licenses back in the 80’s. There was a code requirement, there was no internet, no QRZ, no spotting.

Though I enjoyed ham radio very much, family and work took precedence, and the equipment went into storage. I eventually sold it off (who is dumb enough to sell matching Drakes?).

Fast forward to the around 2010, when I knew I would be retiring and might want to get on the air again. I picked up some used equipment and stashed it away without really using it.

Then 2020 arrived and the world changed dramatically. One day, prompted by who-knows-what, I had the bright idea to dust off the gear and hook it up, mostly to see if it even still worked. A makeshift wire in the back yard and a quick listen and there it was – a CQ.

I was actually nervous to answer – it had been that long. It was KE8BKP, who it turns out, was activating a park. I hadn’t a clue what that meant, but I shakily answered. We exchanged reports and he went on the to the next one. I had two immediate reactions. First, I was reassured by that brief, painless interaction. The stuff worked and I could still “do this.” Second, things had changed a great deal since the “old days.” But I researched POTA and SOTA and DX Clusters and all the other magic that now exists.The point is that POTA gently reopened the door to an amazing hobby, one that still fascinates me. I went on to become an active hunter and now a prolific activator.

Since it has been a year now, I felt it important to acknowledge this moment, and to note one more thing. When an activator answers a call, we don’t know the other person’s circumstances. Maybe they are a new – or returning “old” ham. Maybe it took courage to key the mic or pound the key. I have appreciated the manner in which POTA hams enthusiastically help one another improve, learn and in turn help others. Thanks to Jeff, KE8BKP, and all the others since, and to come. And thanks to the many volunteers that keep the program running each day.

73, and be well,

Mike W6MVT

Mike, I couldn’t agree with you more. I think all POTA, WWFF, and SOTA activators are essentially ambassadors for ham radio. We never know what’s happening on the other end and I strongly believe in patience and understanding when answering calls and performing an exchange. It can have a huge positive impact for the person on the other end.

So glad you found Parks On The Air and that you’re enjoying playing radio once again!

Thank you for sharing your story.

Frank builds the EGV+ Three Band QRP CW Transceiver Kit

Many thanks to Frank Lagaet (ON6UU) for sharing the following guest post:

The EGV+ Three Band Transceiver Kit

by Frank Lagaet (ON6UU)

Another EA3GCY kit has seen daylight.  The EGV+ is ready for you all.

It was beginning 2021 I got word a new kit from EA3GCY was ready and distribution could start.  After a successful build of the DB4020 I did not need much time to decide to buy this kit,  a week later the kit arrived at my QTH.  As weather was good I did not start immediately building but then winter kicked in, with snowfall and frost,  perfect time for some quality time and building the kit.

What do you get ? 

The kit has a general coverage receiver from 6 to 16MHz,  it has a keyer built in,  has RIT without limit,  requires only 0.25A on RX and smaller than 2A on TX.  Dimensions are 18x14cm and weight is 0.3Kg.   It is CW only, able to produce 8W on 40 and some 5-6 on 30 and 20.  The kit has an AB class amplifier.   Spurious is below -50DBc.  The receiver is a heterodyne type balanced mixer,  sensitivity is 0.2µV minimum and the CW filter is some 700Hz wide,  the AGC is on audio.   Furthermore the transceiver is equipped with both output for loudspeaker as for a headset or earbuds.

The kit arrived in a brown envelope and in that envelope I found a well-packed packet of plastic bags and the printed board well packed in bubble wrap.  Around that another layer of bubblewrap.  Safe!!

All plastic bags were checked,  all needed stuff was there, super,  well done Javier.

All components were installed in about 10 hours “relax max style”,  if you have built some kits already you can easily do this one,  all elements are far enough out of each other,  the board is not overcrowded at all.  Some attention is needed when soldering the IC’s and display but even that is a piece of cake.   Be careful when installing the SI5351 module.

Winding the toroids,  just follow what is in the manual,  it is not that hard to do,  I don’t understand what many find so difficult.  Just take your time and don’t rush into it.

I got the transceiver up and running quite quick. I didn’t install a speaker in the cabinet but decided to go for a transceiver where no speaker is in. If I want to use it on SOTA or GMA I don’t need the extra weight and can take earbuds with me.  So I installed the speaker connector on the board.

I made connections towards the CW key and CMD push button with jumper cables which fit exactly on the headers Javier supplies,  a little glue to keep them in place is also added afterward.  For easy operation I mounted the CW key connector and CMD pushbutton on the front of the transceiver.

Do to be able to withstand high power nearby stations,  I mounted the EGV+ in a homemade box which is made of printboard.  The box should be a Faraday cage to keep all QRM out.  If you buy a box, buy one in metal.  I added a laminated front and back which make the transceiver look kinda cool.   Now you can also buy a box from qrphamradiokits.


The alignment is done on 40 meters:  crank up the volume and start turning the 2 coils (L1 and L2)to maximum volume.  Be careful to handle these with caution and don’t use metallic screwdrivers.  Connect an antenna after you’ve done that and do the alignment of the coils again for maximum volume.  Find a station on 40 and redo the alignment once more.  You should already have good results now.

P1 Set sidetone level to your liking.

P2 Set the hangtime of the relay after you’ve been on air–fast fingers will need a quick release. Set this to your liking.

P3 Connect a power meter between a dummy load and the transceiver,  set power on 40 to some 8 Watts.   Measure on 30 and 20 meters,  you should find some 6-7W there.  Don’t set the power to full if you want a long life for the final in the transceiver.  Mine is set for 6W on 20,  resulting in some 7.5W on 30 and some 8.4W on 40.  I think I will reduce even more.

P4 Set to max,  it is the RX-attenuator.

P5 Don’t pay too much attention to the signal meter,  mine is set at 6/8 of the potmeter’s range.  It is only an indication.  If you don’t want the S-meter then you can do a start-up sequence with the tuning knob.

These are in fact the alignments you need to do inside the transceiver.  You should also check Xtal calibration and BFO,  these are settings which you need to do in the set-up.  Don’t forget to write all down when you have maximised these settings. If you do a reset, all these values are erased too so be carefull.

The complete CW 3 bander

Well,  you get a 3 band transceiver which you build yourself,  it has RIT and XIT,  has 4 memories on the KB-2 keyer,  speed of CW can be set between 0 and 50WPM and you can set the KB-2 as a beacon which can be handy too.   The EGV+ provides you with 3 bands which are almost for certain insurance for QSOs when going on SOTA,  GMA or POTA.

You may have noticed some resemblance with the DB4020. You are right as some parts are the same on the board.   The designer worked on the same platform to make two completely different transceivers.  The result is twice the fun for kit builders.

I made a box myself since, at the time of ordering, there were no boxes available,  here’s the result.

The naked printboard transceiver.

After adding a laminated front to the trx,  it looks now like this.  You can see it is not made professionally but I like it.

The paper which is between the plastic was first cut out for the display before placing it in the plastics so giving an extra protection to the display.

I have also made a retractable stand for it,  when folded back it is next to the bottom of the transceiver,  when folded out the stand is under the front of the transceiver,  the retractable stand is also made out of printboard.

It’s an easy-to-make stand–take some old printboard and solder it together.   The pictures explain it all, I think.

Meanwhile, I already made a lot of QSOs with this small (16 X 20 X 6 cm) QRP transceiver.   The power out is better than expected and even reduced so all bands are within QRP regulations.

Finally, I’d like to say that I’m not sponsored to make this kit,  I don’t have any ties with the kit producer, nor do I gain money with building it.   If people would like to have this QRP kit built for them I’m willing to help out in populating the board and aligning it.  A ready made box is available with qrphamradiokits.   This also stands for the DB4020 which I made earlier.

The kit comes for 125€ without shipping costs.  Many European countries will have no shipping costs at all.  The enclosure comes for 50€ all included. This means you have a complete 3 band radio for about 200€.  In my eyes, this is a pretty good deal.

Info about the kit can be found here :   Home – Página web de ea3gcy (qrphamradiokits.com)

And here : EGV+ Three band CW – Página web de ea3gcy (qrphamradiokits.com)

Guest Post: Steve builds a DC30B QRP Transceiver

DC30B QRP Transceiver ProjectMany thanks to Steve (KZ4TN) who shares the following guest post:

DC30B QRP Transceiver Project

by Steve Allen, KZ4TN

I wanted to build a lightweight backpackable transceiver I could take hiking and camping. I chose the 30 meter band as it is specific to CW and the digital modes. I am also in the process of building Dave Benson’s (K1SWL) Phaser Digital Mode QRP Transceiver kit for the 30 meter band. Also, a 30 meter antenna is a bit smaller than one for 40 meters and the band is open most anytime of the day.

I sourced the DC30B transceiver kit, designed by Steve Weber KD1JV, from Pacific Antennas, http://www.qrpkits.com. It appears that they are now (10-11-20) only offering the kit for the 40 meter band. The following information can be used for the assembly of most any kit that lacks an enclosure.

Lately I have been finding extruded aluminum enclosures on Amazon.com and eBay.com. They come in many sizes and configurations. I like to use the versions with the split case which allows you to access the internal enclosure with the front and rear panels attached to the lower half of the enclosure. Most of these enclosures have a slot cut into the sides that allow a PCB to slide into the slots keeping it above the bottom of the enclosure without having to use standoffs. The one requirement for assembly is that the PCB needs to be attached to either the front or rear panel to hold it in place.

DC30B QRP Transceiver Project

As the enclosure is anodized, I didn’t want to rely on the enclosure for common ground. I used a piece of copper clad board that I cut to fit the slot width of the enclosure and attached it to the back panel. I was then able to mount the transceiver PCB to the copper clad board with standoffs. This basic platform of the enclosure with the copper clad PCB provides a good foundation for any number of projects. All you have to do is mount the wired PCB on the board, install the components on the front and rear panel, then wire it up.

DC30B QRP Transceiver Project

I wanted to have the choice of a few frequencies to operate on so I searched eBay for 30 meter crystals and found a source for 4 different popular frequencies. I installed a rotary switch on the front panel and added a small auxiliary PCB with two, 4 pin machined IC sockets. This allowed me to plug the crystals into the sockets. I wired the bottom of the socket PCB first using wire pairs stripped from computer ribbon cable leaving extra length. I marked the wires with dots to indicate which sockets each wire pair went to so I could solder them onto the rotary switch in the correct order. It was tight but I always work with optical magnification so I can see exactly what I’m doing. I have used this crystal switching method in the past with good success.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe rest of the assembly was straight forward. I find that most kits are well designed and documented, and if you take your time and follow the directions carefully all should go well. The two most common speed bumps seem to be soldering in the wrong component or bad soldering technique. I double check all component values and placements prior to soldering, and I always use optical magnification while working. I inspect each solder joint and look for good flow through in the plated through holes, and make sure there are no solder bridges.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe finished product. I bought a Dymo label maker and it works very well for projects like this. I love using these enclosures and they are a leap forward from the old folded aluminum clam shells I used in the past. I could stand on this without causing any damage. Power out is 1-3 watts depending on the DC power in. The receiver is sensitive and the ability to choose from four frequencies is a real plus.

73 de KZ4TN

Steve Allen
Elizabethton, TN

Wow, Steve! What a top-shelf job on this build! I’ll have to look for those aluminum enclosures as well. Beautiful little rig you’ve made there and I think it’s fantastic you’ve a few crystal frequency options! Thank you for sharing!