Category Archives: POTA

POTA Field report from Fort Dobbs State Historic Site

It’s funny: when I started my POTA journey in earnest during February 2020, I plotted out all of the state parks in the part of western North Carolina where I travel the most.

At the time, POTA had only a wee fraction of the community it does now and many of the parks and game lands were still ATNOs (All-Time New Ones)–parks that had never been activated. Fort Dobbs was still one, in fact, and I had marked it on my POTA game plan spreadsheet.

My mission back then was to rack up unique-to-me parks as I explored the region; in doing so, I ticked off quite a few ATNOs. It was fun!

I focused on parks a little further afield first. This provided me with a sense of adventure and travel during the first round of Covid-19 lockdowns.

At the end of 2020, I realized I had never activated Ft. Dobbs State Historic site which was, ironically, one of the lowest hanging fruit sites around. It’s only, perhaps, 30 minutes from where I travel each week.

I suppose Fort Dobbs has been “out of sight, out of mind” until I saw a tweet from Andrew (N4LAZ) who activated Dobbs on August 6, 2021. I mistakenly assumed that the only spots to set up on site were around the periphery of the parking lot. This time of year, in the middle of the hot and humid summer? I’m less enthusiastic about open parking lot activations.

Andrew mentioned that the site actually has an excellent covered picnic area where he was allowed to perform his activation.

That’s all I needed to know!

Fort Dobbs State Historic Site (K-6839)

On Tuesday, August 10, 2021, I traveled to Fort Dobbs State Historic Site and quickly found the covered picnic area Andrew had mentioned. It was, indeed,  ideal for POTA!

Continue reading POTA Field report from Fort Dobbs State Historic Site

Pairing the Mission RGO One with the CHA LEFS at Lake Norman State Park

As I mentioned in a previous post, I do love rotating out radios I take to the field. Shuffling radios not only helps me remember a radio’s features and menu system, but it helps me understand any advantages one radio might have over another.

One radio I use at the QTH a lot is the Mission RGO One. I reviewed this radio for The Spectrum Monitor magazine, and later posted the review on The SWLing Post. It has been a few months since I posted a field report and video using this rig yet it’s one readers ask about all the time because this is a small production run radio.

Before heading out to Lake Norman State Park on August 9, 2021, I grabbed the Mission RGO One, the Chameleon CHA LEFS sloper, and my 15Ah Bioenno LiFePo4 battery. I knew this combo would serve me well as propagation that day was in the dumps!

Lake Norman State Park (K-2740)

Lake Norman is such an effortless park to activate. They’ve a huge picnic area, large trees (for both antenna support and shade!), and are typically not incredibly busy during the week. I love Lake Norman because they also have a very nice Lake Shore Trail I enjoy hiking post-activation.

That Monday morning, as I drove to the park, it was approaching lunch time and I did worry that some of my favorite picnic spots might be taken, but when I arrived, I was happy to see I pretty much had the place to myself!

Gear

Setting up the CHA LEFS sloper antenna takes a couple minutes longer than a standard end fed antenna only because the feed point is elevated and the radiator slopes down from the feed point. Since I typically do activations on my own (with no extra hands to help), I find that a little extra antenna prep equates to a quicker overall deployment.

My procedure for deploying the CHA LEFS

The CHA LEFS sloper

First thing I do is identify a good tree limb at least 45′ or so high and also identify an unobstructed path for the sloping radiator to travel.

Prior to hoisting the antenna, I stretch out the radiator and attach it to a tree or support (using the supplied paracord) in the direction I want the slope to follow.

I then use my arborist throw line to snag the desired tree limb and I connect the end of the throw line directly to the CHA LEFS’ feed point. Chameleon provides Paracord for hoisting the antenna, but the great thing about the arborist throw line is that it’s more than strong enough to handle this job. It saves the extra step of pulling paracord through the tree.

Next, I attach a 50′ length of coax (PL-259s on both ends) and stretch the coax out in the opposite direction of the CHA LEFS radiator. Doing this keeps the antenna from spinning and tangling the radiator and coax as it’s hoisted into the tree.

Finally, I simply pull the throw line and raise the antenna feedpoint to the desired height. Again, I like a height of at least 40-45′, but lower will still work. As I raise the antenna, I do put a little tension on the coax feedline just to keep it from swinging around the throw line or radiator.

Of course, if you have two people, one person can simply stretch the coax as you’re raising the antenna feedpoint which will also keep it from tangling.

That’s all!

In truth, the amount of extra time to deploy the CHA LEFS as opposed to, say, an end-fed half wave is maybe three minutes.

I picked the CHA LEFS for this particular activation because it’s resonant on my favorite bands, it’s efficient, and it was so effective the last time I performed an activation during poor/unstable propagation.

I picked the Mission RGO One because it has an amazingly quiet receiver and handles QRN like a champ. Plus, being a tabletop radio, it also sports a proper speaker, large controls, and up to 50 watts of output power if needed.

Although I’m a QRPer, on days with horrible propagation, I have been known to increase the power beyond 5 watts if operating SSB especially. This year, I set out to validate all of my park and summit activations with 5 watts or less, so at least my first ten contacts at a park will be QRP.

Before starting this particular activation, I took a few moments to record a video and answer a reader question.

On the Air

I thought I’d start by calling CQ on the 40 meter band in CW. Within 15 minutes, I snagged the ten contacts needed for a valid POTA activation. I was very pleased with this.

Since I had mobile phone service, I checked the POTA spots and worked AA3K (Park To Park) then moved to the phone portion of the 40 meter band.

During the exchange with AA3K, I did pump the power up to a cloud-scorching 20 watts! A proper rarity for me.

I then worked an additional five contacts in about 8 minutes in SSB. Very satisfying!

QSO Map

Here’s my QSO map of the entire activation. The red polylines represent SSB contact, the green are CW:

I was very pleased with the results especially after reading reports from other activators that same day who really struggled to get their ten.

Video

Of course, I made one of my real-time, real-life, no-edit videos of the entire activation. If you’ve never seen one of my videos before and have a strong dislike of professional, well-polished YouTube channels, you’re in for a treat! 🙂

Click here to view on YouTube.

Lake Shore Trail

Post-activation–and despite the heat and humidity–I hiked the length of the Lake Shore Trail; roughly six miles. I highly recommend this trail if you can fit it into your schedule.

Thank you!

As always, thank you for reading this report and thank you to those who are supporting the site and channel through Patreon and the Coffee Fund. While certainly not a requirement–my content is always free–I really appreciate the support.

Here’s wishing everyone a little radio fun this week!

Cheers & 73,

Thomas (K4SWL)

How to send a standard POTA CW exchange

Many thanks to Mike (KO4RIT) who writes:

For those of us really, really new CW operators and aspiring QRPers, can you do a video (or a walk n talk) showing several POTA QSO’s in slow motion?

Love your work, thanks.
73
-mike ko4rit

Mike, your timing was impeccable.  I noticed your message on my phone as I was preparing a park activation at Lake Norman State Park on August 9, 2021.

I decided to take a few moments prior to the activation and dissect a “typical” POTA CW exchange on my notepad with the camera rolling.

As I mention in the video, there is no standard or “POTA ordained” exchange, however, once you get into CW you’ll notice that most follow a common formula. POTA, SOTA, and WWFF CW exchanges are, in fact, very formulaic.

I believe in exchanging all of the important details–callsign, signal report and sometimes a state, province, or park number–along with a  little common courtesy. You don’t want to make the exchange too long, but these aren’t contest situations either, so it’s okay to go off script a bit sometimes, too. Just remember that there are (hopefully!) others in-line waiting to work your station when you finish your exchange in progress.

Video

Note that this video is impromptu, unscripted and unedited. I’m sure I missed a few details and it’s perfectly fine, dear readers, to leave other best practices below in the comments section.

Click here to watch this video on YouTube.

Additional Resources:


Do you enjoy QRPer?

Please consider supporting us via Patreon or our Coffee Fund!
Your support makes articles like this one possible. Thank you!

Anatomy of a Field Radio Kit Part 1: Basic components and advantages of going QRP

The following review was first published in the June 2021 issue of The Spectrum Monitor magazine:


Part 1: Anatomy of a field radio kit

by Thomas (K4SWL)

Whether it’s the ARRL Field Day, Winter Field Day, a QRP contest, or, more likely, a Summits On The Air or Parks On The Air activation, I look for any and every excuse to hit the field with my radios.

Most of my on-air time is in the field. While I enjoy operating from the shack, I’ve discovered I especially enjoy operating in the great outdoors.

Besides being a fan of hiking, camping, and the great outdoors generally, I also am particularly fond of radio field gear. I like portable transceivers, portable antennas, battery packs, and all of the accessories that make field operation efficient and enjoyable.

I appreciate the emergency communications skills I’ve developed in the field, too. Should the need (or opportunity) arise, I now keep a complete field kit packed and ready to go at all times, and can even deploy all of it within just ten minutes. In my early days of ham radio operation, I might have easily spent thirty minutes setting the antenna, alone…especially on Field Day, with folks watching me struggle to untangle wires and cables, followed by the undoubtedly entertaining attempts I made to put a line into a tree to deploy the antenna. But after deploying a variety of antennas hundreds of times now, I find that––while I’m still not perfect––I finally have a bit of skill and the process of tossing up a line is becoming much swifter and smoother.

Confessions of a pack geek

The Red Oxx C-Ruck loaded and ready for the field!

If I’m being honest with myself, I admit: I also simply get a thrill out of kitting out my field packs, as well as organizing and tweaking them over time. Yes, (don’t judge me!) I actually like packing up my field gear.

I think my passion for organizing and packing gear goes back to a former career when I lived in the UK, Germany, and France, and was required to travel throughout Europe frequently. Originally inspired by travel guru Rick Steves, I’ve always appreciated the footloose feeling of having all of my travel gear in one lightweight pack. I don’t like checking in luggage, but love the freedom of grabbing my backpack and skipping the baggage claim carousels. And I also like knowing that, even though my gear is compact, it contains everything I need.

I’ve become something of a “less-is-more” traveller. Two years ago, for example, I traveled for one week using what Frontier Airlines classifies as a “personal carry-on.” My Tom Bihn Stowaway pack, which only measures 14.0″ (w) x 9.4″ (h) x 8.1″ (d), carried everything I needed for a conference, including my own presentation gear.

My Tom Bihn Stowaway personal carry on convertible pack with everything I needed for a one week trip including a conference.

Packing for that trip was great fun as it really challenged me to decide what was essential and what was not. My iPad doubled a computing and presentation device, for example, but I also packed a small flashlight and a mini first aid kit, which I felt were important. Of course, I also carried a small portable Shortwave/AM/FM radio and my Yaesu VX-3R handheld…also vital, as I can’t leave home without radios!

Getting started with a field kit

Putting together a field radio kit is so similar to packing for travel: you must first do an assessment of what you need, starting with the basics––then organize it, pack it, and test it.

In my world, this is a very deep topic. We’re going to break down this topic into two parts.

This article, Part 1, we’ll dive in:

  • first, going over the obvious components of a basic field radio kit;
  • second, discussing the benefits of going low-power (QRP) if that appeals

In Part 2, we will:

  • look at variations of kits based on activity, and finally
  • review what I consider the “golden rules” of a good field radio kit

The basics of a field radio kit

First, let’s go over the basics of your field kit, considering that that these primary components will dictate your bag, pack, or case size.

A transceiver

The lab599 Discovery TX-500

Since I’m a bit radio obsessed, I have a number of QRP transceivers I like to take to the field.  But if you have selected one transceiver you plan to dedicate to field work, or simply have only one transceiver, period, you can build a kit around it (and see my note below about “modular” kits). If budget allows, you might consider buying a radio specifically for field use, so it can always be packed and ready to go.

There are a number of transceivers on the market that are designed with field use in mind. Some are compact, power-stingy CW-only QRP transceivers that might only operate on three ham radio bands, while others are 100-watt general coverage transceivers that even have built-in antenna tuners––there’s a wide range of options.

Look for field-friendly, built-in options like:

  • CW and voice-memory keying;
  • SWR and power meter readings;
  • a battery voltage indicator;
  • low current consumption;
  • the ability to lower power to at least one watt;
  • an internal battery option; and
  • an internal antenna tuner option

And the more such options are already built into your field rig, obviously, the less separate accessories you’ll need to pack and keep track of in the field, which is a good thing.

The Elecraft KX2 has a built-in ATU, battery pack, and even attachable CW paddles!

Some of my favorite field-ready general-coverage transceivers currently in production are:

  • The Elecraft KX2 A full-featured, inclusive, and compact 80-10 meter transceiver that’s truly a “Swiss-army knife” of field operation (see November 2016 TSM review)
  • The Elecraft KX3 Benchmark performance, wide array of features, and compact design
  • The lab599 Discovery TX-500 Military-grade engineering, weatherproof, spectrum display, and benchmark current consumption for a general-coverage radio (see October 2020 TSM review)
  • Mission RGO One Top-notch performance, 50-watts out, and excellent audio (see November 2020 TSM review)
  • The Yaesu FT-817/818 Rugged chassis, 160-6 meters, VHF and UHF multi-mode, both BNC and PL-259 antenna inputs
  • The Xiegu X5105 Affordable, 160-6 meters, 5 watts output, built-in ATU, and built in rechargeable batttey
  • The Xiegu G90 Affordable, relatively compact rig with built-in ATU, color screen with spectrum/watefall, good audio, and 20 watts of output power (see August 2020 TSM review)
  • The Icom IC-705 Benchmark performance, a multitude of features, exchangeable battery packs, 160-6 meters, VHF and UHF multi-mode, D-Star, GPS, WiFi, Bluetooth (see February 2021 TSM review)
  • The Yaesu FT-891: Affordable relatively compact radio with detachable faceplate, 100 watts output, and excellent audio (see November 2017 TSM review)

And if you’re primarily a CW operator, you’ll have some incredibly compact radio options like the CW-only Mountain Topper MTR-3B or 4B, or the Elecraft KX1 (used).

An important side note for field contests: if you plan to use a field transceiver in an event like the ARRL Field Day and/or another popular radio contest, make sure you choose a transceiver that can handle tightly spaced signals in an RF-dense environment. This is not the time to pull out a lower-end radio with poor receiver specifications. Use Rob Sherwood’s receiver test data table as a guide.

An antenna––and a means to deploy/support it

The CHA LEFS sloper

This particular topic, alone, might warrant a three-part series of articles. So, to keep the scope of this article realistic, let’s just say that you should build or buy an antenna that can comfortably handle the wattage you’re pushing into it in all the modes that you operate, considering that some 100-watt SSB-rated antennas might melt or arc if you run 100 watts CW or FT8.

I would suggest you consider having at least one resonant antenna, like an end-fed half-wave (EFHW) that might cover 40 and 20 meters without the need of an antenna tuner to match the antenna impedance to your rig.

Some of my favorite portable antenna systems?

I’m a big fan of Chameleon Antenna for their ease of deployment and benchmark build quality. Their prices range from $145 for the Emcomm III random wire, to $550 for their MPAS 2.0 vertical antenna system. These prices are near the top of the market, but Chameleon antennas are all machined and produced in the US and the quality is second to none. These are antennas you might well pass along to the next generation, meaning, really heirloom-worthy kit!

Packtenna 9:1 UNUN Random Wire
The PackTenna 9:1 UNUN

PackTennas, likewise, are pricey for such a compact product, but they are also beautifully engineered, lightweight, and designed for heavy field use. PackTenna produces an EFHW, 9:1 UNUN random wire, and linked dipole models. They’re some of the most compact field antennas on the market that can still handle as much as 100 watts of power output.

My Wolf River Coils “TIA” vertical antenna

Wolf River Coils verticals are affordable, compact, and resonant––thus an ATU isn’t needed. It will take some time to learn how to adjust the coil during frequency changes, but they work amazingly well. I have the WRC Take It Along (TIA). Their antennas are designed to handle 100 watts SSB, 50 watts CW, or 20 watts digital.

The EFT Trail-Friendly

Vibroplex sells a number of compact field portable antennas and is the manufacturer of Par End Fedz offerings. I’m very fond of the EFT Trail-Friendly and the EFT-MTR.

The MFJ-1984LP EFHW packs a lot of performance for the price

MFJ Enterprises also has a few portable antennas in their catalog, and it’s very difficult to beat the price and performance of their antenna gear. I have their $50 EFHW antenna (the MFJ-1982LP) and love it.

The Elecraft AX1 attaches directly to the BNC port on the KX3 and KX2.

I’ve also had tremendous fun with the uber-compact Elecraft AX1 antenna. Unquestionably, it’s the most compact and quickest-to-deploy antenna I own. It’s designed to pair with the Elecraft KX2 and KX3 using the optional internal antenna tuner.

There are a number of other antenna manufacturers who cater to portable operators. For example––although I’ve not yet had the opportunity of testing their antennas––SOTAbeams is highly regarded among SOTA enthusiasts.

Short on cash? No worries; you can build your own! In fact, until 2016, I had never purchased a field antenna; I built all my own. EFHW antennas and random-wire antennas are no more than a carefully-wound coil, a female antenna connector, an enclosure or mounting plate, and some wire. Some of the most active field operators I know homebrew all of their antennas. It’s easy, affordable, and fun!

In fact, some antennas are no more than a bit of speaker wire matched with a good ATU.

A power source

A 3Ah Bioenno 12V LiFEPo4 powering my LD-11 transceiver

I’ll keep this point brief because we recently covered the topic of batteries in detail in our previous feature.

Make sure you choose a battery that is sized appropriately for your transceiver power output. I will say that I’m a huge fan of LiFePo4 rechargeable batteries for their voltage range, lightweight design, and longevity. Being primarily a QRPer, I typically use 3 to 4.5 amp hour batteries as they’ll carry me through as many as three or four activations without needing to be recharged. For longer field deployments, or when I’m powering my 100W KXPA100 amplifier, I’ll use my 15 aH Bioenno LiFePo4 pack.

I use my 15Ah Bioenno LiFePo4 pack for QRO transceivers

Again, check out our Portable Power Primer for a deep-dive into the world of portable power.

A key, mic, and/or computing device

It should go without saying that you need to pack these, but I have gone to the field with operators who forgot their key or mic and asked if I had a spare.

Keys are fairly universal, but keep in mind legacy transceivers often want a ¼” plug while newer rigs typically accept an ⅛” plug. Microphones, however, vary in port type and pin configuration based on the manufacturer and model. You could damage your mic or rig if you plug in a multi-pin mic that was designed for a different transceiver. Most mics that use a ⅛” plug are universal. Still, check before you plug it in if using an after-market or non-OEM mic.

Of course, choose a key, microphone, or boom headset that’s compact and rugged so that’ll be easy to pack and will stand the test of time.

I also always pack a set of inexpensive in-ear earphones. These can dramatically help with weak-signal interpretation.

Also, if you plan to operate a digital mode, you’ll likely need some sort of computing device. Even though I rarely operate digital modes in the field, I often pack my Microsoft Surface Go tablet in case I change my mind.

My Microsoft Surface Go tablet

In addition, I like logging directly to N3FJP’s Amateur Contact Log application directly in the field to save time submitting my logs later. Soon, I’ll be using the new HAMRS field log on my iPhone.

Speaking of logging…

A means of logging

I like compact notepads like Muji and Rite In The Rain for field use.

As simple as it is, it’s very important to take at least some paper and a pencil for logging your contacts. I like using small, pocket-sized Muji notebooks (affiliate link) for logging, and if the weather is even a little questionable, I’m a huge fan of getting my contacts down in Rite In The Rain mini notebooks (affiliate link) or notepads using a good old-fashioned pencil.

I like logging to paper and sometimes simultaneously logging to my Microsoft Surface Go. I have completed phone-only field activations where I only logged to my Surface Go tablet: in those cases, I snap a photo of my N3FJP call log, just in case something happens to my tablet between the field and the shack! Having endured enough technology failures, it gives me peace of mind to have at least one other backup.

Keep in mind that when you’re activating a park or summit, the folks calling you are relying on you to submit your logs to the appropriate programs so that they can get credit for working you. Many times, this might also help their awards for a state, county, or grid square. Always submit your logs after an activation even if you didn’t make enough contacts to validate the activation (POTA requires 10 contacts, SOTA requires 4 logged). It helps other folks out.

A pack or case

If you have a field radio kit, you’re going to need a means to organize and contain it for transport. There are at least three types of systems used for field kits.

A backpack or soft-sided case

My GoRuck BulletRuck is a brilliant SOTA pack

Since I enjoy the option of hiking with my radio gear, I love using backpacks. Although I’ll speak to this more next month in “Part 2,”, I choose quality packs that have at least one waterproof compartment and are comfortable to carry on long hikes. I also try to look for packs with Molle or some sort of external strapping so that I can attach portable antenna masts or even my hiking poles to the exterior of the pack.

A waterproof case or flight case

Ruggedized, weatherproof cases come in all sizes. This Pelican 1060 can house my entire KX1 radio kit.

Many field operators who want extra protection for their gear––especially when they don’t plan to hike or carry their gear long distances to the operating site––like hard-sided cases. I have built field radio kits in waterproof Pelican cases and appreciate knowing that I could drop my kit in a whitewater river, and it would likely survive the adventure unscathed. If you are one of these operators, look for quality watertight cases from brands like Pelican and Nanuk with interiors lined in pick foam padding that allows you to perfectly accommodate and safely protect your radio and accessories.

Portable ready-to-deploy cases

Although this option is almost outside the scope of this article, many emergency communications enthusiasts love having their gear loaded in rugged, portable––often rack-mounted and hard-sided––cases that they can simply open, hook to an antenna, and get right on the air. These systems are often the heaviest, least “portable,” and less suited for long distance hikes, but they’re often completely self-contained, with all of the components, including the power, hooked up and ready to go on a moment’s notice. While a system like this would be impractical for many Summits On The Air sites, it could be ideal for a park or island activation where you’re never that far from your vehicle.

Optional: Antenna cable

An ABR Industries RG-316 cable assembly

This doesn’t sound like an option, but it’s true.  I’ve often operated my Elecraft KX3, KX2, and KX1 without a feedline at all: I simply attached two wires to a BNC binding post, and connected that to the radio. It makes for a super-compact setup.

Even an 8-12 foot feedline can make it easier to configure your operating position in the field. If you want to keep the feedline as low-profile as possible,  especially if you’re operating QRP, consider investing in a quality RG-316 feedline terminated with the connector that fits your radio and antenna.

Optional: Antenna Tuner/Transmatch

A portable ATU with RF-sensing like the Elecraft T1 will give you an amazing amount of frequency agility. I’ve been known to use the T1 to tune my CHA Emcomm III random wire antenna on 160 meters..

Again, this topic could easily warrant a multi-part series of articles, but I’ll sum this one up in a nutshell: while I love (and even prefer) using resonant antennas that require no antenna tuner, I almost always carry a radio with a built-in ATU or an external portable ATU like the Elecraft T1 or ZM-2.

Why? Because an ATU will give you a certain amount of frequency agility or freedom. If I’m using an antenna that’s resonant on 40, 20, and 10 meters, but there’s a contest that day and the bands are incredibly crowded, I might use the ATU to find a match on 30 meters or 17 meters, thus finding a little refuge and space to operate. Also, sometimes antenna deployments aren’t ideal––due, for example, to site limitations such as dense vegetation that may alter the antenna deployment and thus its resonance. An ATU can at least keep your transceiver happy with the SWR when your resonant antenna might not be perfectly resonant.

But the main reason I carry it? A portable ATU gives you operational flexibility.

QRP or QRO?

I have operated QRO in the field with my KXPA100 amplifier on Field Day.

Its good to keep in mind that many of the station accessories listed above need to be matched to the output power of your transceiver and modes you use.

Many ham radio friendships have been placed in jeopardy over the question of either using QRP (low power) or QRO (high power) for field operations. This is a shame. Some operators have very strong opinions, but the truth is, there is no right or wrong answer.

In the spirit of full disclosure, I operate 97% of the time at QRP power levels––in my world, this means five watts or less. Personally, I enjoy the challenge of low-power operating.  But I also appreciate the portability QRP gear offers.

The wee Mountain Topper MTR-3B

Speaking pragmatically––and this fact really isn’t open to debate––QRP and lower-power transceivers and accessories tend to be more efficient, more compact, and lighter than their higher-power siblings.

Most of my QRP transceivers weigh anywhere from two to five times less than their 100-watt equivalents. If you’re operating mobile (from a vehicle or camper/caravan, for example), an eight to twelve pound difference might not be a big deal. But the moment you’re hiking several miles to a mountain summit, weight becomes an important factor.

QRP transceivers have modest power requirements: everything from battery, to antenna, and even to tuners, are smaller, lighter, and more compact.

When operating QRP, you don’t have to worry as much about RF coming back to the radio from, say, an end-fed antenna. If I’m pushing over 20 watts into an end-fed half wave or end-fed random wire, I’ll likely want an in-line RF choke to keep some of that energy from affecting my transceiver or giving me an RF “tingle” when I touch the radio chassis or my key. Too much RF coming back to the transceiver can also affect things like electronic CW keying. But at five watts? I don’t worry. This is almost a non-issue, unless your transceiver happens to be very RF-sensitive indeed.

And even though I’m predominantly a QRPer, I definitely do pack radios like the 50-watt Mission RGO One and occasionally my Elecraft KX3 and KXPA100 100-watt amplifier, especially for an event like Field Day where my club is operating at higher power. I simply size up my gear appropriately. Again, this is especially important with your antenna, feed line, ATU, and battery selections.

If you primarily activate parks and are never far from your vehicle, it’s quite easy to accommodate a 100 watt transceiver like an FT-891, for example. Of course, if you wish to operate low-power and save your battery, simply turn down the output power. If you plan to hike a lot with your gear, then get your mind around QRP!

Stay tuned for Part 2!

In Part 2 we’ll dig into some of the details, looking at different approaches to field radio kits and some guidance and suggestions based on my real-life experience (read: operating mistakes).

Click here to read Anatomy of a Field Radio Kit Part 2.


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

POTA Field Report: A beautiful day for obnoxious QRM!

A few weeks ago–on July 12, 2021–I popped by Lake James State Park to do a quick activation with the Icom IC-705. It had been a while since I’d used the ‘705 in the field and the little rig was begging to go outdoors.

Here’s the funny part: I completely forgot about that activation! Two days ago, while browsing my photo archive, I noticed the video I made of the activation and, of course, the memory came flooding back.

In my defense, it has been a crazy summer and the weeks/days seem to all blend together in my head.

Thing is, this activation was memorable for a bad reason: QRM (human-made radio noise). It was also memorable for some of the folks I worked on the air.

Lake James State Park (K-2739)

I arrived at Lake James and was a bit surprised to practically have the place to myself.

I found a picnic table with a view of the water, deployed my speaker wire antenna, and set up the IC-705. As with all of my activations, I was only running 5 watts.

I attached the speaker wire antenna’s BNC binding post adapter directly to the mAT-705 Plus ATU.

Gear:

Propagation was–you guessed it–forecast as very poor.

It felt that way when I hopped on 40 meters at first as the band was pretty quiet..

Still, I managed to log 5 contacts on 40 meters (two in SSB, three in CW) before moving up to 20 meters which served me well.

I worked a total of eight stations in nine minutes on 20 meters.

QRM

Check out the noise level on the waterfall display!

If you watch the video, you’ll hear how nasty the QRM was at times.

I keep forgetting that there’s a source of intermittent radio interference at the Lake James visitors center. The spot where I set up the station was only 25 meters or so from that building. I believe the center was responsible for the QRM I first experienced during the activation. Whatever the device is generating the QRM, it doesn’t last for long periods of time–it cycles.

The second batch of QRM was emanating from a small boat that pulled up to the dock in front of my site. It was nasty and completely wiped out the 20 meter band. When the owners turned off the boat and stepped onto the dock, the noise stopped completely. Later, when they got back into the boat, the noise started again. I have to assume it was something in their motor causing the QRM. I suspect they may have been using a DC trolling motor.

Memorable contacts

POTA activations often feel like a gathering of friends. I often see many of the same callsigns in my logs and it’s a lot of fun working them each time.

Also, it’s a lot of fun to work stations further afield. At Lake James, I was very pleased to work NK7L in Washington State, IK4IDF in Italy, and HA9RE in Hungary. My back of the envelope calculations tell me that I was pushing 1,000 miles per watt when I worked Elemer (HA9RE). To be clear, all of the work was done on his end as he has some world-class ears; just check out his QRZ page!

For some reason when I logged HA9RE, I copied VA4RE. I’m not sure why, but after packing up it hit me that I had logged him incorrectly (funny how brains work!). I reviewed the video on-site and confirmed it was indeed HA9RE.

Here’s my QSO Map:

I was also very pleased to finally work Dave Benson (K1SWL). He’s very well-known in QRP circles for his amazing Small Wonder Labs kits. Dave’s a great guy and, of course, loves playing radio in the field.

Video

Here’s my real-time, real-life, unedited video of the entire activation. Apologies in advance as I really needed a wind screen over my microphone that day–I had the mic and camera a little too close.

Loop next time!

The next time I hit Lake James, I plan to deploy a Chameleon loop antenna. I think it will have a significant impact on the QRM levels at that particular part of the park. Of course, I could easily move further away from the noise source (that’s the easiest solution) but I’d like to see how effectively a loop might mitigate the QRM. That and it’s been years since I last used a compact mag loop antenna in the field.

Thank you

Again, thank you for reading this report and thank you to those who are supporting the site and channel through Patreon and the Coffee Fund. While certainly not a requirement–never feel an obligation to do so (especially if you’re investing in your first station, for example)–I really appreciate the support.

Here’s wishing you some outdoor radio fun in the near future!

Cheers & 73,

Thomas (K4SWL)


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Field Report: Some QRP POTA and SOTA at Hanging Rock State Park!

I’m not a summer-heat-loving guy. Quite the opposite, in fact. Give me cold weather and I can hike and camp forever.

On Tuesday, July 13, 2021, it wasn’t cold outside, of course, but I still wanted to fit in a park activation and hike. Despite the forecast highs of 90F/32C. I had almost the entire day to play radio, too–a rarity.

When I have an entire day to devote to radio, I can either hit the road and try to hit multiple parks–perhaps as many as 5 or 6–or I can choose to venture further afield and hit a new-to-me park.

I tend to choose the latter and that Tuesday was no exception.

North and north by NW of Winston Salem, NC, are two parks I’ve always wanted to visit: Hanging Rock State Park and Pilot Mountain State Park.

I devised a plan to first visit Hanging Rock, then Pilot Mountain. Both parks are close together geographically, but a good 30 minutes drive apart.

A quick check of the SOTA database and I discovered that there are actually two summits on Hanging Rock State Park’s grounds. One is off the beaten path a bit and would require some light map work, and the other–Moore’s Knob–is on one of the park’s main trails.  Since I was putting this whole plan together morning of, I opted for the “easy” summit as I didn’t have time to double-check topo maps, parking areas, etc.

Hanging Rock State Park (K-2735)

Travel time to Hanging Rock was about 1 hour 45 minutes. Once I arrived on site, I discovered that, like many state parks, the main visitor’s center is being renovated.

I easily found the parking area for the Moore’s Knob loop. It being a Tuesday, the parking lot only had a few cars.

Pro tip: with the visitor’s center out of commission, stop by the swimming area pavilion for some proper restrooms/washrooms!

I planned to take the full trail loop in a counter-clockwise direction.

I’m glad I did, too, as the bulk of the ascent was a long series of steps. I’m not a fan of steps, but I much prefer using them heading up a mountain rather than down.

Near the summit, there’s a very short spur trail to Balanced Rock which is worth a visit not only for the rock, but also the views.

It being a North Carolina state park, there are some obligatory warning signs about how falling off of cliffs can lead to injury or death. These warning signs aren’t as prominent as those at Crowders Mountain State Park, though!

Moores Knob (W4C/EP-001)

You can see my MPAS Lite vertical poking out of my pack. I brought it along in case I had no good tree options. In this case, I didn’t use it.

There’s no mistaking the summit as there’s a large observation tower on top that affords some spectacular views of the Blue Ridge Escarpment, the foothills, and Pilot Mountain (my next stop).
There were a number of hikers on the summit of Moore’s Knob and it was actually pretty gusty up there, too. I searched and found a nice little spot to set up that was sheltered from the wind, shaded, and even had trees tall enough to hang my Packtenna 9:1 UNUN random wire antenna!


Gear:

Set up was quick and easy on the radio side of things, but as with most SOTA activations, positioning my tripod to make a video was the tricky part. Since I’m sitting on the ground, it can be difficult to find the right angle so that the radio, key, and notepad are all in the frame. (See my video below).

I started calling CQ at 16:00 UTC on 20 meters. I had a reasonable cell phone signal on the summit, so I was able to spot myself. Problem was, though, my hiking app seemed to be draining my iPhone’s battery very rapidly (that and my aging iPhone 7 probably needs a new battery at this point). After spotting myself, I shut down the phone to save power.  I forgot to contact my buddy Mike (K8RAT) with a frequency, but he eventually saw me on the SOTA spots.

In a period of 29 minutes, I worked 20 stations on 20 meters.

Next, I moved up to 17 meters where I worked eight more stations in seven minutes.

I love effortless activations like this and part of me wanted to continue operating–even switching to SSB–but looking at the time, I knew I needed to hit the trail, make my way back to the car, and drive to Pilot Mountain.

I called QRT around 16:42 UTC and packed up my gear.

QSO Map

Not bad for 5 watts and a 31′ wire!

One highlight of this activation was meeting Jim (NA4J) who heard my CW from the summit and popped by to introduce himself. Although I trimmed out our conversation in the video (I’m not entirely sure he knew I was recording the activation), you’ll hear him in the first half of the activation.

Video

Here’s my real-time, real-life video of the entire activation:

Click here to view on YouTube.

The hike back to the car was very pleasant. It was a bit longer than the path I took to the summit, but the descent had no steps which made it a breeze.

I had a radio topic on my mind during that hike and actually pulled out the OSMO Action camera and made a bit of a “hike and talk” video.  It’s on the topic of ATUs and resonant vs non-resonant antennas. I haven’t yet decided if I’ll post it–the shaky camera might make some viewers sea sick! 🙂 We’ll see–maybe I’ll brave up and post it anyway…

Next, I drove to Pilot Mountain State Park for a quick afternoon activation. Although Pilot Mountain is a SOTA summit, too, it’s yet to be activated because the actual summit would require proper rock climbing, I believe.

Thank you

As always, thank you for reading this field report! And thank you to everyone who has supported me through Patreon and the Coffee Fund. I truly appreciate it.

I hope you find time this week to take your radios outdoors to play, or to hunt some parks and summits from your shack, backyard or vacation spot!

And for those of you working on your CW skills, don’t give up and don’t stress about it. Take your time and allow your brain to absorb code by simply listening. When you feel you’re able to copy even some of the contacts in the videos of my activations, you’re ready to start hunting CW activators!

You’ve got this!

73,

Thomas (K4SWL)


Do you enjoy QRPer?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

What is it they say about the best-laid plans?

Ever have one of those days where nothing works out the way you had planned–?

Yeah, me too.

In fact–and this is purely a coincidence–today was one of those days for me!

Here’s how it played out…

A New-To-Me Park

This morning, I had an optometrist appointment in Hendersonville, NC and needed to fit in the appointment on my way to visit my parents for a couple of days. I don’t often venture out to Hendersonville so I looked up a few parks in the area and thought I might fit in a quick activation around lunch.

Keep in mind it’s been nearly two weeks since my last field activation, so this QRPer is having some serious withdrawal.

I looked at the map and realized that Green River State Game Land was a very short detour. I had meant to activate Green River last year and actually located an ideal spot for an activation via the NC WRC maps but never activated it. Since it would be awfully fun to fit in a new-to-me park en route to visit the folks, I mapped out my travels, scheduled the activation via the POTA website and notified my buddies Mike (K8RAT) and Eric (WD8RIF) so they could look for me on the air.

The optometrist appointment went well (thanks for asking) so I made my way to Green River Game Land. I had no problem finding the site–it was basically an open parking area off a rural road.

It was hot, though. My car’s thermometer measured 93F, the humidity wise high, and there were no trees to provide shade. I sat up the Chameleon MPAS Lite, a folding chair, and used the open hatchback of my Subaru as shade from the noon sun. It was *just* enough shade for my chair. I placed the Xiegu X5105 on my clipboard, connected the key, and turned on the radio.

QRM!

The first thing I heard on the radio is the last thing any activator wants to hear. Noise…lots of it.

The radio was tuned to 17 meters and the noise was approaching S9.  The noise was raspy and sounded like arching from power lines.  I looked at the road behind me where there were several power lines meeting at three different poles.

I checked 20 meters, 30 meters, 40 meters, and 60 meters. The noise was consistently loud across those bands.

I’m certain the noise was coming from a local power pole–it could have been a staple, nail, or something else that was arching.

It was so incredibly hot on site, I had no desire to attempt hiking into the game lands far enough to escape the noise. In my experience, power line/pole noise can propagate vast distances. Plus, again, it was just too hot.

Normally, I’d try to find another game land access point, but having already done a bit of research, I knew going to an alternate spot would be too much of a detour. This was the only access point along my route.

I decided, instead, to pack up my gear, continue my travels, and plot an alternate activation.

South Mountains Game Land

Photo from earlier this year.

I called my buddy Mike, and told him I thought I’d try South Mountains Game Land. In the back of my mind, I had been wanting to visit one portion of South Mountains I activated in the winter this year. I thought, perhaps, it was actually near a SOTA summit on the game lands.

I pulled over at a gas station a good 45 minutes from South Mountains and tried to log into the POTA website to change my scheduled activation (so it wouldn’t spot me at the wrong park via the Reverse Beacon Network). Problem was, before logging me in, Google wanted to initiate a two-factor authentication since I hadn’t logged into the POTA site on my phone in a while. Google wouldn’t send me a text message to confirm, it wanted me to dig a confirmation code out of my Pixel 3 phone that I only use as a video camera and the Pixel 3 was inaccessible.

I had a hunch that I wouldn’t have mobile phone access on site, so I called Mike back and he agreed to correct my spot on the POTA network. (Thanks, Mike!)

Ten minutes from the game lands entrance, I noticed dark clouds had formed to my north. I pulled over and checked my weather app while I had Internet access. Sure enough, a large line of thunderstorms had formed and were heading my way, very slowly. I decided then and there I was not going to do an activation–my phone was already giving me severe thunderstorm warnings–but I thought I might at least explore the site and see if the road would actually lead to a SOTA summit.

Three minutes from the site entrance, the heavens opened. It was a proper gulley washer of a deluge, too–the type that forces you to drive at a snail’s pace and the type that causes flash-flooding. I turned down the game land road and then the lightening started popping too.

I threw in the towel.

Although a part of me would have enjoyed taking the dirt road several miles into the game lands, these rains were the type that wash out dirt roads and I had no intention of dealing with that too. Plus, it would be my luck…right? Right.

Still…

I’m really not that bothered because I actually enjoyed the drive today (save when I hit the storms) and I also found a place in Hendersonville that makes excellent Gyros!

That and I fully intend to do an activation or two tomorrow, weather pending.

We’ll have to see how it plays out. It’s all a part of the field radio fun!

73,

Thomas (K4SWL)

New River State Park: Pairing the Discovery TX-500, Elecraft T1, and PackTenna 9:1 UNUN

Last month, my family went on a camping trip to New River State Park and had an amazing time.

I first discovered New River much earlier in the year when I did a multi-park and summit run.  I really liked the park and, especially, the campground, so I decided to return with the family for some proper outdoor fun and relaxation.

Of course, the benefit of camping at a state park is being able to play radio pretty much anytime while on the park grounds. For a few days, it’s like you’re living in a park activation and can actually set up an antenna and use it over the course of multiple days.

It’s such a big departure from my typically short (45-90 minute) park activations.

When we first arrived at the New River State Park campground, I deployed my PackTenna 9:1 UNUN random wire antenna.

I brought two transceivers with me: the Xeigu X5105 and the Discovery TX-500–I pretty much split my operating the time equally between the two radios.

New River State Park (K-2748)

Although I spent much more time on the air than I normally do, I didn’t make videos of each session. One reason is I wanted to operate with earphones–especially since some of my sessions were later in the evening or early in the morning. I didn’t want to disturb my neighbors at the campground.

That and, especially with the X5105, I wanted to see what it would be like to operate with earphones for extended sessions. Prior to making videos of my activations, I almost exclusively used earphones in the field. I appreciate the sound isolation earphones offer–I also find they help tremendously with weak signal work. When I make videos, however, I don’t want to go through the hassle of recording the line-out audio separately in order to use headphones, so I use an external speaker.

I decided to record my Wednesday, June 23, 2021 evening session with the Discovery TX-500.

Gear:

This session started only a few minutes prior to the end of the UTC day which meant I had to watch the clock very carefully and clear my logs at the beginning of the UTC day (20:00 EDT).

In POTA and other field activities, if your activation straddles the UTC day change, you must keep in mind that any contacts made after 0:00 UTC can only be counted on the next day’s logs. This was not a problem for me because I had logged dozens of stations earlier in the day, but if you ever start an activation close to the UTC day change, you need to make sure you log your 10 contacts for a valid activation prior to 0:00 UTC.

Auto-spotting help

Another thing complicating my sessions at New River State Park was that I chose not to schedule my activation via the POTA website prior to our trip.

If you schedule your activation via the POTA website, anytime the Reverse Beacon Network picks up your CQ calls (in CW), the POTA spots website will scrape that information and auto-spot you.  It’s an amazing convenience for those of us who operate CW.

I chose not to schedule my activation days at New River because I had also planned to operate at another nearby park during my stay and I didn’t want the system to spot me incorrectly. That, and I thought I would have mobile phone coverage to self-spot.

It turned out that–contrary to my mobile phone company’s coverage maps–I had no internet service at the park. None.

In order to get spotted, I relied on my Garmin InReach GPS/satellite device to send short text messages to my buddies Mike (K8RAT) and Eric (WD8RIF). My pre-formatted message would prompt them to check the RBN for my frequency, then spot me to the POTA site manually.

I’m incredibly grateful to have had them helping me in the background. Everyone should have a Mike and Eric as friends!

Video

I made a real-time, real-life, no-edit video of the entire activation. Note that it took a while to get spotted, so the first ten minutes are simply me talking (it’s alright to skip that bit…it won’t hurt my feelings!).

Also, here’s a QSO map of that day’s contacts. Note that this includes stations I logged later in the UTC day (i.e. the following morning/day.

Due to some unexpected conflicts, our camping trip was shorter than we would have liked. We plan to visit New River later this year and spend much more time there. It’s a beautiful park!

Thanks for reading this short field report and here’s hoping you get a chance to play radio in the field soon!

73,

Thomas (K4SWL/M0CYI)

Portable Power Primer: A beginner’s guide to selecting the best battery option for your field radio kit

The following article originally appeared in the April 2021 issue of The Spectrum Monitor magazine:


I’ll admit it:  I’m a massive fan of field radio.

In 2020, I easily spent a total of 100 hours outdoors with my radios activating a total of 82 sites for the Parks On The Air (POTA) program alone. This doesn’t include hours and hours of SWLing (shortwave radio listening). It’s been great.

Taking radios into the field is so much easier to do today than it was in, say, 1985 or earlier, because we have so many more options for powering our gear in the field. Not only have radios become more efficient in operating off of battery power, but we now have so many affordable and lightweight rechargeable battery choices on the market.

In the following article, let’s take a look at some portable battery power options for your radio gear. By “portable,” I’m talking power options for those of us who load a backpack or carry case and head to the field.

To keep the scope of this article in check, I’m also going to focus only on rechargeable battery options. And rather than get bogged down in the nuances of battery chemistries, we’ll focus on the end result––the pros and cons of each battery type, and how practical they might be for your field application.

In addition, I’ll also limit discussion to batteries that can be purchased of-the-shelf rather than addressing homebrew options. While I love building things, I’m very cautious when dealing with battery charging because if not done correctly, the results can be dangerous. I prefer obtaining products from trusted suppliers who thoroughly engineer and test their equipment.

Let’s take a look at several types of batteries, and speak to their advantages…as well as disadvantages. Then––as we summarize our findings––let’s discuss how to choose the right option for your needs.

Consumer-grade rechargeable batteries

Let’s begin by talking about the lowest-hanging fruit in terms of portable power: everyday rechargeables in the form of 9V, AA, AAA, C, and D cells.

While, admittedly, these batteries are not typically an option because of their limited capacity and energy density, they can still be a very practical power source for portable receivers and even a few QRP transceivers.

Rechargeable battery chemistries have improved with time, thus I no longer purchase nickel-cadmium (Ni-Cd or NiCad) or legacy nickel metal hydride (NiMH or Ni–MH) batteries.

 

These days I almost exclusively purchase low-self-discharge nickel metal hydride (LSD NiMH) batteries, specifically, Panasonic Eneloop batteries (Amazon affiliate link).  Although they’re a pricey option compared with generic NiMH batteries, and might even be overkill for certain applications, I do love the shelf life of Eneloops.

Of course, the benefit here is Eneloops have that low self-discharge. They will maintain charge better at rest (i.e., when not in use) than legacy NiMH or NiCad batteries. From my real-word usage, I’m convinced that Eneloops also demonstrate better longevity over numerous charge/discharge cycles than many others.

All of my portable shortwave receivers that accept AA or AAA batteries are powered by Eneloops exclusively.

And although I’ve never done this myself, it is also possible to power highly-efficient QRP transceivers with Eneloop batteries, so long as you use a multiple battery holder to increase voltage and capacity to match both your rig and your desired amount of operating time.

WD8RIF’s AA battery holder

Keep in mind, though, that most transceivers will require a block of at least ten AA batteries to reach a voltage around 12 VDC. As you might imagine, it can be cumbersome after using your radio in the field to remove all ten of these batteries and charge them in a charger that can only hold, say, four batteries at a time. I personally prefer other options, but this one is certainly a fairly affordable, safe, and accessible option.

Note that in recent years, Panasonic started offering Eneloop Pros: while pricier than standard Eneloop batteries, they offer slightly higher capacity at the expense of overall longevity (roughly 500 versus 2100 total charge/discharge cycles). Since the voltage is the same, I’ve never felt the need to use higher-capacity Eneloop Pros.

Rechargeable Panasonic Eneloop AA batteries (non-Pro version):

  • Price: $2.25 – $4 US per battery, depending on the number in the package
  • Weight: 4 grams/.4 ounces per cell
  • Voltage: 1.2 V each
  • Longevity: Excellent, up to 2100 charge/discharge cycles
  • Ease of recharging: Simple via Eneloop OEM chargers
  • Solar- charging option: Eneloop originally marketed solar chargers, but doesn’t seem to do so presently

Sealed Lead Acid (SLA) Batteries

When I first became a licensed ham radio operator in the late 1990s, sealed lead acid batteries were the primary battery power source used for field radio operation.

At the time, these batteries were one of the best options for portable radio use because they could be purchased in a variety of sizes (based on amp hour capacity), and unlike flooded lead acid batteries, they required no maintenance––and being sealed, did not outgas.

While I’ve owned everything from 3 Ah to 15 Ah SLA batteries, I found the once-ubiquitous 7-8 Ah size to be the “sweet spot” in terms of portability and capacity.

SLA batteries are still among the most accessible high-capacity batteries on the planet. No matter where you travel, it’s likely you’ll be able to hunt them down in any hardware or electronics store. Our small local hardware store has a wide selection of these at their battery kiosk.

What are some of the pros of these batteries? In terms of “bang for buck,” the SLA is still hard to beat. You can purchase a quality 7.2 Ah 12-volt SLA battery for about $18-20 US (affiliate link). This would be more than enough battery to power a typical QRP transceiver for many hours on end. Chargers are also inexpensive––you can purchase a dedicated charger for about $10-15 US. Not bad.

In addition, 12-volt batteries are nearly ideal for amateur radio use since most transceivers are designed to operate with 12-13.8 volts DC +/- a modest margin.

There are some negatives compared with more modern battery chemistries, however. For one, SLA batteries are much heavier than the batteries we’ll discuss in the following sections. After all, they’re (still) made of lead!   In addition, the battery’s longevity will be negatively impacted if you discharge it too deeply.

With that said, if you take care of an SLA battery, it can give you five or more years of service life in the field, yielding an excellent value for the modest investment. If you have an application that requires relatively little capacity from the battery, you might get a very long service life, indeed. In 2011, I built a remote antenna tuner box around an LDG Z11 Pro ATU and a discarded 7Ah 12V SLA battery. At the time, this battery could no longer hold voltage long enough to be reliable in the field, but I knew the Z11 Pro requires very little in the way of power, so I thought I’d try it as a power source anyway. Since the remote ATU box isn’t near an outlet, I charge the SLA battery with a 5-watt solar panel I purchased used at a hamfest with a Micro M+ charge controller. A decade has now passed, and that SLA battery continues to power the Z11 Pro even through seasonal temperature variances of -10F/-23C to 90F/32C. Not bad! Again, keep in mind this application works because the Z11 Pro is so flexible in terms of power requirements––it’ll operate on 6-16 volts DC at 300 mA with a 20 uA standby current.

Clearly, SLA batteries are affordable candidates for back-up power in the shack during occasional power outages.

  • Price: Most affordable option per Ah of the batteries listed here
  • Weight: By far, the heaviest of all the battery options in this article
  • Voltage: Various, but 12VDC is very common
  • Longevity: Very good if properly maintained
  • Ease of recharging: Easy, via simple charge controllers
  • Solar charging option: Multiple types of charge controllers can be used with SLA batteries; among the listed batteries, the easiest and least expensive to charge via solar

Lithium-Ion (Li-ion)

 

Without a doubt, lithium-ion batteries have revolutionized the consumer electronics world.

Why are they so popular?

First of all, their construction allows for a variety of form factors ranging from cylindrical cells to slim packs and pouches so thin they can fit in an ultra-thin mobile phone, eReader, or tablet. They’re the easiest type of battery to accommodate in compact consumer electronics, and indeed, they power most of the consumer electronics we’ve put to use in the last decade.

Secondly, they have a very high energy density, thus pack a lot of capacity for the size and weight. Indeed, if size and weight are your primary requirements, li-ion batteries should be high on your list.

In addition, Li-ion batteries are ubiquitous and affordable because they’re used in so very many applications.

There are negatives, though, with these power sources. First and foremost, they’re very sensitive to over-voltage and over-current events that initiate a thermal runaway. To prove this point, I’ll share some first-hand experience from the early days of large lithium-ion packs…

Li-ion Horror Story

In 2011, I evaluated a lithium-ion battery pack with integrated 5V USB chargers and even a simple one-outlet inverter from one of the big names in portable power systems. At the time, this was a new battery pack and a relatively new technology, at least in terms of the energy density and compact size. After receiving the battery, I charged and discharged it perhaps twice during testing. I had a flight scheduled from North Carolina to California, and decided I’d take it in my carry-on bag to power my laptop in flight. It worked fine on the flight to KSFO. Once there, I recharged it.  On my return flight, it simply didn’t work. I thought perhaps I hadn’t plugged it in properly, or that the hotel outlet I used didn’t work. Upon arrival I emptied my travel pack onto the bed and plugged in the battery pack; it indicated it was taking a charge.

After doing a few projects around the house, I went back up to the bedroom and was greeted with an overpowering smell––almost like the pungent chemical odor of nail polish remover. I looked everywhere for the source of the odd smell.  Finally, I located it:  it seemed to be coming from the battery pack. Upon examination, I could tell the battery had begun to swell. As I lifted it up, I noticed that the bottom portion was essentially in a state of melting. As quickly as I could, I unplugged it and removed it from the room. I then discovered that in the thermal runaway process, it had begun burning through the sheets and mattress of the bed. Shocked, I suddenly realized it could have burned down my home.

Keep in mind, I was completely new to this battery technology, and this was years before thermal runaways made the news and airlines began restricting their transport. To my relief, the company from which I purchased the pack ended up pulling that model off the market, and even reimbursed me for the mattress and bedding. But it was a hard lesson learned.

If I’m being perfectly honest, this lesson had a major impact on my willingness to experiment with Li-ion battery packs.

The problem with the model of pack I had purchased was not the battery chemistry or construction, per se, but the charge controller). The fact is, Li-ion batteries require millivolt accuracy and a number of protections to detect and stop thermal runaway. Battery packs with multiple cells need a battery management system (BMS) that also balances the cells and monitors them closely. Fortunately, most manufacturers of the technology now understand this.

Modern Li-ion cells and chargers are much safer and more stable 

Since then, Li-ion battery chargers have become both orders of magnitude safer and more effective. Still, I only charge these batteries on a surface which, should the battery be tempted to melt down, would be less likely to be damaged or serve as a fire hazard. I also never leave them unattended during charging.

With that said, I don’t think Li-ion batteries are to be feared. Obviously, many of us walk around with one tucked in our pocket all day––in our smartphones! They’re generally considered very safe now.  Of course, I’d only buy the best and would steer away from the lowest-costs units you might find on eBay and Aliexpress, as many of these products are made in places with little oversight or regulation.

Another interesting fact about Li-ion battery packs is that since their voltages are usually available in multiples of approximately 3.6 volts (e.g., 3.6, 7.2, 10.8, 14.4 and 18 volts), they are not always ideally suited for radios that require 13.8V input power. Some packs, however, have circuitry that provides an output voltage closer to your desired amount.

One Lithium-ion battery pack I’ve been using with my Mountain Topper MTR-3B, Elecraft KX2 and KX3 transceivers is a (very affordable) TalentCell rechargeable 3000 mAh Li-ion battery pack that provides both 12V and 5V USB power. It has built-in charging circuitry and is very compact. I purchased mine for about $25 on Amazon.com, and have been very pleased with it so far.

Summits On The Air operators often place priority on smaller-sized and lighter-weight power sources, and thus turn to Li-ion battery packs. Many SOTA friends have invested in high-quality balance charger/dischargers to maximize the life of their batteries, and have been happy with the performance they receive. A quality charger may costs upwards of $60, but is worth the investment if you choose Li-ion batteries as your portable power of choice.

  • Price: From affordable to pricey, depending on capacity and charger investment
  • Weight: The lightest weight portable battery options in this list
  • Voltage: Often in multiples of approximately 3.6 volts: (3.6, 7.2, 10.8, 14.4 and 18VDC)
  • Longevity: Good. Typically around 400-500 charge cycles if properly maintained
  • Ease of recharging: Simple, if a self-contained pack; more complex, if using multiple cells that need balancing
  • Solar charging option: Not advised (yet). There are a number of homebrew Li-ion solar charging projects on the web, but I believe this battery chemistry fares better with a balance charger connected to a stable AC power supply.

Lithium Iron Phosphate (LiFePo4/LFP)

I typically use my 15 Ah LiFePo4 battery pack when powering transceivers like the Mission RGO One that can push 55 watts of output power. I also use this battery to power my Elecraft KXPA100 amplifier on Field Day.

The final type of battery chemistry we’ll cover here is my favorite of the bunch.

There are good reasons why Lithium Iron Phosphate batteries have become one of the choice rechargeable batteries for field radio use.

  • LiFePo batteries are inherently stable and safe
  • They offer a longer cycle life than that of other Li-ion, NiMH, NiCad, or Lead Acid batteries–thousands of charge cycles as opposed to hundreds
  • LiFePO batteries have an excellent constant discharge voltage
  • LiFePo batteries use phosphates––as opposed to cobalt or nickel, which are supply-constrained and carry heavier environmental concerns
  • LiFePo batteries have a lower self-discharge
  • LiFePo batteries are very lightweight compared to SLA batteries
  • 3.2 V nominal output voltage means that four cells can be placed in series for a nominal voltage of 12.8 V, near ideal for most field radio gear

Any cons? Yes…while they’re lightweight, LiFePo4 batteries aren’t as compact as Li-ion battery packs.  But the primary negative here is the price.  At time of print, LiFePo4 batteries have the highest cost per Amp hour of the batteries discussed in this article. With that said, due to the excellent longevity of these batteries, the LiFePo may be the most cost effective option in the long term.

LiFePo4 battery systems sport built-in battery protection modules to address concerns like over-voltage and balancing.

How do LiFePo batteries stack up?

  • Price: One of the pricier options, when you include the battery and charger
  • Weight: Very light weight, but size tends to be larger than comparable Li-ion packs
  • Voltage: Excellent match for gear requiring 12V – 13.8 VDC
  • Longevity: Excellent. Thousands of charge/discharge cycles
  • Ease of recharging: Simple, using the provided charger (battery packs have a built-in charge controller)
  • Solar charging option: Bioenno sells charge controllers designed to work with LiFePo batteries, handy for the field

Without a doubt, the best-known LiFePo battery manufacturer in the world of ham radio is Bioenno Power. I’ve purchased their batteries exclusively and have been incredibly pleased with the quality, longevity, and performance of their products.

Choosing the right battery for you

Each one of these battery types have their pros and cons, and you can find lengthy, in-depth discussions online about the nuances of each battery chemistry. At the end of the day, however, what matters is which one best suits your particular application and provides your gear with the appropriate amount of voltage.

Here’s when I would reach for each of our types of batteries…

NiMH LSD AA batteries

WD8RIF uses Eneloop rechargeable AA batteries with his Elecraft KX3 field kit (Photo: WD8RIF)

If you’re willing to use a battery pack to run 8-12 cells in series to achieve your required nominal output voltage, Eneloop batteries are relatively affordable, lightweight, and of course, power an array of electronic devices in our world.

If you plan to use QRP power for short periods of time, these may suit your needs quite well. My buddy and Elmer, Eric (WD8RIF), has used Eneloop batteries to power his Elecraft KX3 for the majority of his Parks On The Air activations.

Of course, AA Eneloop batteries are also invaluable for those of us who have an arsenal of portable shortwave radios that accept AA cells!

Sealed Lead Acid Batteries

If you’re on a very tight budget and weight is less of a concern, SLA batteries are a great choice. They’re an especially affordable option if you plan to make a solar-powered battery pack since charge controllers are quite simple and affordable.

If you’re looking for a stationary back-up battery for home, these are an excellent choice, as long as you keep the charge topped up.

Li-ion Batteries

Backpacking or flying overseas, and size and weight really do matter? Purchase a Li-ion battery system. Li-ion cells and packs offer the highest energy density of any of the battery chemistries in this list. They’re incredibly compact––and as long as you use a quality charge controller with built-in protections, and you don’t damage or puncture an actual Li-ion pack––they should be quite safe, and you’ll be pleased with performance. Note:  Keep in mind some airlines have regulations about the size of Li-ion battery pack you’ll be allowed to carry on board, so do check before departure.

LiFePo Batteries

The 9V 3Ah Bioenno LiFEPo4 pack is very compact and pairs beautifully with the Mountain Topper MTR-3B as this particular transceiver prefers voltages at 12 volts and below.

If you’re looking for a simple, effective portable battery solution that is almost custom-designed to power radio gear, invest in a LiFePo4 battery and charger. I have everything from a 15 Ah 12V LiFePo4 battery that can power my 50 watt Mission RGO One transceiver, to a 3 Ah 12V pack I now use for 2-3 hours in the field at a time with my QRP transceivers. Bioenno has recently sent me a 9 V 3 Ah battery pack to test with my Mountain Topper MTR-3B––it’s incredibly compact, since it only needs three 3.2V cells in series. LiFePo batteries are also the ones I suggest for those who are new to the world of battery packs and want something that is hassle-free and simply performs.

 

I admit, I’m being transparent here about why I own a total of three LiFePo4 batteries from Bioenno Energy––they’re amazing and I know I can rely on them.

In summary…

…I would offer this final piece of battery-usage advice: whatever you do, don’t “cheap out” on your battery and charging system. No matter what chemistry you decide to purchase, buy the best quality you can afford. If using any variant of a Li-ion battery, heed my tale, and be sure any separate charge controllers you employ will protect your battery (and your home)!

And now…Go out there and have fun. I assure you:  when you take your radios––whether portable shortwave radios or ham radio transceivers––to the field, you’ll find you can escape all of the noises that so often plague us indoors. And out there, you, too, may find your radio bliss.

943 Miles Per Watt with the Yeasu FT-817ND, Elecraft T1, and 28.5 feet of speaker wire

When it comes to parks, I haven’t picked up many new-to-me “uniques” lately.

In truth, though, I’ve put more effort into activating unique summits which takes more time to plan, plot, and activate. SOTA has taken a bite out of my park uniques, but I’m good with that because to me it’s less about my park/summit numbers and more about the exploration and outdoor radio time.

On Tuesday (July 6, 2021) however, I added one more unique to my 2021 park count: Mountain Island Educational State Forest (K-4858).

This park is actually a modest detour during my weekly travels, but I’ve never popped by for an activation. You see, unlike other state parks I visit, Mountain Island isn’t yet open to the public on a daily basis. On their website, they state that visits must be arranged in advance, so I reached out to them the morning of July 6 and they promptly replied, welcoming me for a visit and activation that very same day!

Off the beaten path

Since this state park isn’t yet open to the public, I didn’t see the typical brown highway signs pointing me to the park entrance, but Google Maps steered me right to the front gate where there’s a sign.

The gates were unlocked and open, so I pulled into the property and met with two of the park staff who were incredibly kind and accommodating. They were both familiar with the Parks On The Air (POTA) program which made it much easier for me to ask about spots where I could set up my station.

First, though, I wanted to know more about Mountain Island Educational State Forest so I asked ranger Laura about the history of the site.

Turns out, Mountain Island is the newest Educational State Forest in North Carolina and has been in the works for more than 20 years.

The Forest is a vast conservation area that protects 12 miles of shoreline on Mountain Island Lake in the Catawba River Basin. This lake is the primary drinking water supply area for Charlotte, Mecklenburg and Gaston Counties. She told me that one in 23 North Carolinians rely on this area for their source of water.

Much of the land was originally owned by Duke Power who put it up for sale in 1998. Conservation groups purchased the land from Duke’s real estate agency in 1998 and put it into a conservation easement. The land is actually in two counties (Gaston and Lincoln) and a portion in the city limits of Gastonia.

The NC Forest Service now manages the forest and supports the public-private partnership with the counties, municipalities, and conservation groups.

Mountain Island has been actively educating school groups and the public about the river basin and local flora/fauna for many years by appointment. Currently, a new education center is being built on the property and will soon be open to the public with regular business hours. Being so close to population centers, I imagine they’ll stay busy!

Shade

Park ranger Laura was kind enough to allow me to set up under a huge tree in front of their ranger station.

I was grateful for the shade: it was 92F (33.3C) and humid.

There were no picnic tables under the tree, but I happened to have two folding chairs in my car. I used one as a table and the other as a chair. I flipped over my GoRuck GR1 backpack to make a stable base for the Yaesu FT-817ND.

Gear list:

On The Air

I was super pleased to put the Yaesu FT-817ND back on the air. It’s been a while since I’d used it in the field because my review radios (TX-500, X5105, etc.) have taken priority.

I love the FT-817ND and believe it’s actually an exceptional transceiver for CW and SSB ops. The CW full break-in QSK is wonderful and I actually like the mechanical sound of the T/R relay switching (if you like pin diode switching, you should look the other way, though!). With the 500Hz CW filter installed, the front end is pretty bullet-proof, too!

This was the first time I had paired the FT-817ND with my 28.5 foot speaker wire antenna. The random wire antenna needs a good ATU to match impedance, so I employed the Elecraft T1 this time (soon I’ll also try the LDG Z-100A).

I had planned to do a little SSB work, but quickly realized I’d forgotten the FT-817ND microphone. A shame because this site actually has excellent mobile phone service so I could have spotted myself to the network. Next time–!

I started on 40 meters CW and worked ten stations in 21 minutes. That’s a perfect pace for me!

Next, I moved to 20 meters where I worked six more in 9 minutes.

I was incredibly pleased with how well the speaker wire antenna performed–especially on 20 meters.

From the Piedmont of North Carolina, I worked Montana, Texas, New Hampshire, and Italy with 5 watts into $4 worth of speaker wire.

I did a quick back-of-the-envelop calculation and discovered that I yielded about 943 miles per watt!

To be clear, IK4IDF did all of the heavy lifting in our contact with his 9 element Yagi, but still it’s awfully exciting to put DX in the logs with only fair propagation.

Video

Of course, I made a real-time, real-life video of the entire activation (save the set-up and take-down):

Click here to view on YouTube.

Onward and upward!

I packed up quickly because I had a SOTA activation planned that afternoon on Anderson Mountain. I’ll post a field report and video of that activation soon.

Rev 4 FT-817 Buddy Board

Also, I’m about to start soldering together G7UHN’s new Rev 4 FT-817 Buddy Board! Revision 2 worked wonderfully, but revision 4 now includes a CW memory keyer among other upgrades! (Woo hoo!)  All of the components are now in the shack–just a matter of soldering them together and programing the Arduino Nano. Andy, if you’re reading this, expect a call from me soon, OM!

Thank you!

I’d like to thank all of you for reading this field report and I’d especially like to thank those of you who contribute to QRPer.com via Patreon and our Coffee Fund. While my content will always be free and QRPer is very much a labor of love, your support helps me purchase gear and supports my radio travels. With that said, if you’re saving up for your first radio or need to invest in your own kit, I’d rather you support yourself.

My goal with QRPer is to champion field radio operations and encourage others to discover the benefits of playing radio outdoors!

Have a wonderful week!

73,

Thomas (K4SWL)


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!