Many thanks to Jim Cluett (W1PID) who has kindly allowed me to share this recent post from his website:
Field Day – 200 QSOs with a Flashlight Battery
June 2021
by Jim Cluett (W1PID)
Field Day was an experiment this year. I operated for nine hours using a 5V 18650 battery and made 200 QSOs before calling it quits.
I operated on the deck with an MTR 4-B designed by KD1JV. The antenna was an 88 foot doublet up about 45 feet. I used the ZM-2 tuner. For power I used the PowerFilm LightSaver. This is a 5 watt roll-up solar panel that charges a 3.7V 18650 battery rated at 3.2 Ahr. The battery inside the Powerfilm product is commonly used in flashlights. The combination of the rig and the power supply is crucial.
The MTR rigs will operate from 6 to 12 volts. The Powerfilm puts out 5V to a USB socket. The secret ingredient required to bring the USB voltage up to the operating voltage of the rig is a Baofeng USB charging dongle. This device takes a 5V input and outputs 10.3 volts… perfect for the MTR transceiver. With this voltage the MTR puts out a little less than 3 watts.
The PowerFilm LightSaver is designed to charge cell phones for hikers and campers. It weighs only about 5 oz. and rolls up into a tiny package. Any USB 5V cell phone charging battery could be used with the Baofeng dongle.
This year my whole station operated on 5V. I used a Samsung tablet for logging.
In New Hampshire it was cloudy for most of Field Day, but fortunately the amorphous solar panel provides some charging even when it’s cloudy. I’m guessing that after 9 hours of operating the battery was down to about half capacity. The beauty of this system is that one could operate indefinitely with moderate sunshine.
I’ve been experimenting with this setup during hikes and bike rides for the last couple of months with a view to using it for Field Day. This year’s emergency exercise proves that it is viable for an extended grid-down power outage.
What a brilliant challenge and test for Field Day, Jim! Thank you for allowing me to share it here on QRPer. Also, a hat tip to Eric (WD8RIF) for bringing this article to my attention!
Until 2016, I had never purchased a commercial field antenna; I built all the ones I had ever used.
These days, I take a number of commercial antennas to the field and use them in my real-time videos and I really enjoy deploying and using them. My buddy Eric (WD8RIF) reminded me, though, that I hadn’t actually used a homebrew antenna in ages. He was right!
You see, while I believe commercial field antennas can be incredibly durable and compact, it’s important to note that antennas are one of the easiest components of an amateur radio system to build yourself. They require only the most simple of tools and are very affordable. And the best part? They can perform as well as those that are available commercially.
I also get a great deal of pleasure out of building things.
A simple goal
I’ve mentioned in previous posts that I often set a little goal that runs in the back of my mind for each park or summit activation I make.
On Monday, June 14, 2021, I made a simple goal: buy my antenna wire en route to Lake James State Park, build the antenna on site, and complete a valid Parks On The Air (POTA) activation.
A very simple antenna
I also decided to employ my Xiegu X5105 since 1.) it’s one of the most affordable general coverage QRP transceivers I own and 2.) it has a built-in antenna tuner (ATU).
One of the cool things about having an ATU is that, if it has the matching range, you can allow it to do the “heavy lifting” in terms of matching impedance.
Although I’d never put the X5105 to the test, I suspected its internal ATU would have the matching range to forgo building a 4:1 or 9:1 transformer and simply pair it directly with a random wire.
All I would need was a 28.5 foot length of wire for a radiator, at least a 17 foot length for a counterpoise, and a BNC to binding post adapter.
The antenna would benefit from multiple 17′ counterpoises, but I really wanted to keep this setup dead simple to prove that anyone can build an effective field antenna with a very minimum amount of components.
Even though I have plenty of wire lying around the house to build this simple antenna, I wanted to pretend I had none to prove that any wire would work.
And to add just a wee bit more challenge, I also limited myself to shopping for antenna wire between my home and the park without making a serious detour from my route. That really limited my options because there isn’t much in terms of commercial areas between me and Lake James State Park.
The wire
As I left the QTH, I decided that the best spot to shop was a Walmart in Marion, NC. It would only be a four minute round-trip detour at most. I had a hunch that Walmart would even have speaker wire which would be ideal for this application.
In my head, I imagined I would have at least three or four choices in speaker wire (various gauges and lengths), but turns out I had a difficult time finding some at Walmart. We live in such a Bluetooth world, I suppose there isn’t much demand for it these days. A store associate helped me find the only speaker wire they had which was basically a 100 foot roll of the “premium” stuff for $17 US.
While I would like to have paid a fraction of that, in the end it’s not a bad price because once you separate the two conductors, you have double the amount of wire: 200 feet.
Although the frugal guy in me cringed, I bit the bullet and purchased their speaker wire. To be clear, though, I could have found another source of wire in that Walmart, but I preferred speaker wire for this application. And $17 to (hopefully!) prove a point? That’s a deal! 🙂
Lake James State Park (K-2739)
Once I arrived on site, I found a picnic site I’d used before with some tall trees around it.
Here’s how I prepared the antenna:
First, I cut 28.5 feet of the speaker wire from the roll and split the paired wires so that I’d have two full 28.5 foot lengths.
Next, I stripped the ends of the wire and attached banana jacks I found in my junk drawer. Although these aren’t necessary as the binding post adapter can pair directly with the wire, I though it might make for a cleaner install. In the end, though, I wasn’t pleased with the connection to the radiator, so dispensed with one of the banana jacks on site, and later dispensed with the other one as well. The connection is actually stronger without the banana jacks.
I then deployed the 28.5 radiator with my arborist throw line, and laid the other 28.5 half on the ground (the ground of this antenna would pair with the black binding post, the radiator with the red post). I only needed 17 feet of counterpoise, but once it couples with the ground, I don’t think any extra length makes a difference (although less than 17 feet likely would).
The antenna was essentially set up as a vertical random wire with one counterpoise.
I then plugged the BNC binding post adapter into the rig, hit the ATU button, and was on the air.
I’ll admit: I was a bit nervous putting this antenna on the air. Although I felt the X5105 ATU *should* match this antenna, I had no idea if it actually would.
Fortunately? It did.
At this point, if you don’t want any spoilers, I suggest you watch my real-time, real-life, no-edit, no-ad, video of the entire activation (including buying and building the antenna!).
I was very pleased that the X5105 found a match on the 40 meter band.
I started calling CQ in CW and validated my activation by logging 10 stations in 13 minutes.
Honestly: it doesn’t get much better than this.
I logged three more stations on 40 meters CW, then moved up to the 30 meter band where the X5105 easily found a match.
I worked one station on 30 meters before heading back down to the 40 meter band to do a little SSB. I logged three SSB stations in five minutes.
Mission accomplished!
In the end, I logged a total of 17 stations including a P2P with K4NYM.
Not bad at all for speaker wire!
After the activation, I tested the X5105 ATU by trying to find matches on other bands–I was able to find great matches from 60 meters to 6 meters. Most impressive!
All I can say is that I’m incredibly impressed with the X5105 internal battery. This was my fourth activation from one initial charge on May 16. The battery lasted for 20 minutes, taking me well beyond the 10 contacts needed to validate this park. I’ll now consider taking the X5105 on a multiple SOTA summit run!
Short Hike
Even thought the heat was intense and the humidity even more intense, I decided to take in a 2 mile hike post-activation. I snapped a few shots along the way.
Improvements
I’ll plan to add more counterpoises to the speaker wire antenna as I know this will only help efficiency.
In addition, I’ll plan to build even more antennas with this roll of speaker wire. If you have some suggestions, feel free to comment!
Speaking of low-cost simple feet for the IC-705, I recently ran into Max (WG4Z) at a summit/park activation. He had an incredibly simple solution for his ‘705. Max noted that his approach:
“only uses two 4 mm bolts just the correct length to make the radio tilt up so the back of the radio is flat against the bottom surface as well. I leave the bolts attached all the time. However, I do put a thin piece of cardboard under the bolts to keep them from scratching the LDG tuner thats always is under the 705.”
I love it! Of course, it would also be easy enough to unscrew the bolts when not in use. Thanks for the tip, Max!
Like many I’ve taken the plunge on an Icom IC-705. Even though I sold off an old Yaesu 817 to finance part of it, it still cost a very pretty penny and I didn’t want to shell out more for a tilt stand or bail.
Especially at the rather extravagant prices they’re going for now. $30, $40? No thank you. (Really, the radio, at $1300, should have come with one in the box, but why beat that dead horse – it is what it is.)
In any case, I looked around the house for something to DIY one with. I found a couple of metal angle brackets, screws that fit the mounting holes, and some tiny rubber bumpers to shield from nicking up the radio’s plastic case. Voila! Instant tilt stand. See pics:
And just the right angle too. My plan is to plastic-dip the brackets so I can get rid of the bumpers as well as not nick up any softer surface the radio sits on.
IC-705 Bluetooth Question
Meanwhile, a question for you and other owners of this radio.
What’s up with the Bluetooth function? I have three bluetooth speakers and a small audio amp with built in BT, and I can’t get audio to play through them. The unit sees the accessories and connects. But no sound. I’d updated the firmware to 1.24, just in case they might have addressed any issue. Still no joy.
That being said, I can control the radio via BT with android apps, etc, but no audio. A very disappointing development for such an expensive radio.
Oh well. The good with the bad and all that…
Joe Patti (KD2QBK)
Thank you for sharing this, Joe! That’s a very clever and simple solution for the IC-705 stand.
As for the Bluetooth functionality, I’ve yet to use it. Hopefully, someone here can chime in and comment with advice!
If you’re an Amazon Prime member and have been considering the Xiegu G90, you might consider pulling the trigger today.
I just noticed that this G90 is on sale for Prime Day (June 22, 2021 being the last day) for $399.20 US. This is the lowest price I’ve ever seen for the G90 including shipping and free returns.
I purchased and reviewed the Xiegu G90 last year for The Spectrum Monitor magazine. I kept the G90 for a few months, but eventually sold it as I had planned to do from the beginning. I personally didn’t need 20 watts of output and since the G90 had no CW or SSB memory/message keying, I simply didn’t take it to the field a lot, instead opting for my smaller QRP radios.
However, I know some park and summit activators who almost exclusively use the G90 and love it. As I state in my review, it must be one of the best value radios on the market even for the $450 I paid.
There’s a reason the G90 is one of the most popular HF transceivers on the market.
Again, if you’ve been considering one, this might be a great time to pounce on one as it’s at least $25 less than the lowest price I’ve seen to date. You must be an Amazon Prime member to take advantage of this deal. At time of posting, the seller still had 18 units in inventory.
Each time I head to a park or summit, I have a goal in mind.
With summits, it’s getting to the summit and activating it because, sometimes, that can be a challenge in and of itself. I’m not exactly Sir Edmund Hillary, so I’m happy when I make it to the top of any summit!
Parks, however, offer me the chance to experiment with transceiver/antenna combos, test gear, and explore hikes. Parks tend to be more accessible and spacious than summits and even have shelter options if weather is questionable.
I don’t even attempt afternoon summit activations if they require a decent hike and there’s a good chance of pop-up thunder storms.
On Monday, June 7, 2021, it was hot and incredibly humid in the Piedmont of North Carolina. That early afternoon, little patches of showers were passing through the region delivering brief, isolated downpours.
The weather forecast also predicted a high likelihood of thunderstorms that afternoon. (Turns out, they were correct.)
Those were not conditions for a SOTA activation, rather, I decided to pick out a park I knew could offer up some shelter options. Lake Norman was an obvious choice–there’s a very nice covered area at their visitor’s center and also two large picnic shelters at the other side of the park. Lake Norman it was!
Goal
I drove to Lake Norman State Park with one goal in mind: deplete the Xiegu X5105 internal battery. I had assumed the battery would only power the X5105 for perhaps two activations on one charge.
Now three full weeks later, I decided I would deplete the battery at Lake Norman because that afternoon I had a decent amount of time to play radio in the field. In my head, I was prepared to squeeze perhaps 30-45 minutes more air time out of that one May 16 battery charge.
Lake Norman (K-2740)
I arrived at Lake Norman State Park and scouted out a site. Fortunately–it being a Monday in the early afternoon–it wasn’t busy and all three shelters were available.
I chose to set up at a shelter at the far end of the main picnic area.
The humidity was so thick that day, I was sweating just walking around the site. I noticed in my activation video (see below), I was breathing as hard as I would hiking to a summit even though I was just tooling around the picnic shelter.
I had no doubt in my mind that if a thunderstorm developed, it would be a doozie! (I was right about that, too–keep reading.)
On The Air
I paired the Xiegu X5105 with my Chameleon MPAS 2.0 mainly because I wanted to see how easily the X5105 ATU could match this multi-band vertical. Turns out? Quite easily.
I expected the X5105’s battery to deplete to the point that I would need to use an external power source to complete the activation, so I connected my QRP Ranger battery pack, but didn’t turn it on. I knew that when the radio died, I could flip the QRP Ranger’s power switch and perhaps only lose a few seconds of air time.
I hopped on the air and started calling CQ. I planned to operate the X5105 until the internal battery died, then (if needed) continue operating with the QRP Ranger until I logged my 10 contacts for a valid activation. Post activation, I planned to hike one of the Lake Norman loop trails.
Normally, I would mention the number of contacts I made perhaps noting the bands that were most productive. Instead, if you’d like to experience this activation with me, you might consider watching the activation video.
Please note that this is the longest video I’ve ever published, so don’t feel any pressure to watch it in its entiretity:
Impressed
Let’s just say that the X5105 sold me.
The activation was incredibly fun and I logged 20 stations (18 CW and 2 phone) from Alaska to Spain with my 5 watts and the MPAS 2.0 vertical. Propagation conditions were only “meh” but since I had the time to play radio longer, I was able to take advantages of little openings as they happened.
X5105 Battery
The X5105 won.
I simply gave up on trying to deplete the internal battery because I was running out of time to fit the activation and a much needed hike that afternoon before thunderstorms moved in.
I operated over 90 minutes with constant CQ calls and the battery never made it below 10.2 volts.
A most welcome surprise.
No mic, no problem!
During the activation, I remembered that I had been asked by readers and viewers to include more SSB work.
Problem was, I left my X5105 mic at the QTH (nearly 2 hours away by car).
I remembered though that, like the Elecraft KX2, the X5105 has a built-in microphone.
I decided to give that mic a trial by fire and, by golly, it worked!
Not only did it work, but it worked well.
The X5105? A keeper.
It was at Lake Norman that day, I decided the X5105 was a keeper.
That evening, I reached out to Radioddity–who lent this X5105 to me–and offered to pay full retail price for it either in cash or via ad credit
Since Radioddity is a sponsor on my other radio site–the SWLing Post–we decided that, since their ad was coming up for renewal soon, I would simply extend their ad time an equivalent amount of months as the full value of the X5105 ($550 US). This saved them from having to cut a check in two months. Worked for both of us.
I have much, much more to say about the X5105 and will do so in an upcoming review.
In short, though? It’s not a perfect radio by any means, but I feel like it really hits a sweet spot for the QRP field operator.
I enjoy putting it on the air and it’s an incredibly capable little transceiver.
I’m very pleased to now put it in rotation with my other field radios. Look for it in future reports!
QSO Map
Here’s the QSO Map for this activation (click to enlarge):
Hike and dodgy weather
After packing up my gear, I walked over to a nearby trailhead and checked out the trail map. I was prepared to take a very long hike that afternoon despite the heat and humidity, but I also knew conditions were ripe for a thunderstorm.
I decided to take what appeared to be a fairly short loop trail along the lake. Looking at the map, I assumed the trail might be 1 mile or so long.
The hike is well-worn and well-marked, so there’s no getting lost here. That’s one of the reasons I didn’t bother looking at my GPS map or even consulting the trailhead map in detail.
Instead, I simply started hiking the Lake Shore Trail loop. It was gorgeous. Here are a few photos (click to enlarge):
The skies started getting dark, though, and I heard a little distant thunder.
I decided it might make sense to consult my phone for the weather map.
A line of thunderstorms had developed and they were sweeping toward me. Time to pick up the pace of hiking!
It was at this point I realized I had underestimated the length of this loop trail. Part of me was quite pleased that it was longer than I anticipated, but the part of me that didn’t want to be caught out in a t-storm wanted to get back to the car ASAP.
I checked another weather map a few minutes later.
I decided that jogging the rest of the trail made sense!
Turns out the 1 mile loop was something closer to 3 miles when I included the walk back to the car.
I did make it back to the car in time, though, right before the heavens opened.
It’s no exaggeration to say that I was sincerely concerned about the possibility of tornadoes in that storm front.
The skies were dark enough that streetlights turned on and the rain was incredibly heavy with strong wind gusts. I saw flash flooding and driving conditions were nearly impossible. I parked next to a brick building in the town of Catawba and waited for the strongest part of the storm to pass. I was also very grateful I wasn’t still on the trail by the lake!
Of course, the storm passed and I expected conditions to be a little drier behind that front, but I was wrong. I think the humidity level increased to 150%. Ha ha! No worries, though, as I was on my way to air conditioned space!
Thanks so much for reading this field report and stay safe out there!
I’ve read through this and must admit that as someone who typically operates at QRP power levels, I would have less worries than those pushing the legal limits in densely-populated neighborhoods.
Here in the Asheville, NC area, there’s one mountain that almost anyone can recognize by sight: Mount Pisgah.
Mount Pisgah is prominent because not only is it one of the taller summits bordering the Asheville basin, but it’s also home to the WLOS TV tower and and a cluster of public service and amateur radio repeaters.
I’ve been eager to activate Mount Pisgah for Summits On The Air (SOTA). Along with Bearwallow Mountain, and Mount Mitchell, it’s one of the most popular SOTA summits in the Asheville area.
Being so accessible from the BRP, the Mount Pisgah trail also receives a heavy amount of foot traffic. Being locals, our family tends to skip this trail when we’re venturing along the BRP because it can be so congested at times.
Mount Pisgah (W4C/CM-011)
On Tuesday, June 1, 2021, Hazel and I decided to hit Mount Pisgah fairly early and avoid the crowds.
We arrived at the trailhead around 8:15 AM and there were very few cars there–a good sign indeed!
Hazel was chomping at the bit to start our hike!
The trail is only about 1.5 miles with a 700 foot elevation gain, so not strenuous.
It was blissfully quiet and we only passed two other groups of hikers on the way up.
I’ll admit that I was keeping an eye out for black bears, though. We saw bears very close to the trailhead entrance on the BRP that morning. I may have mentioned before that black bears are not something to be feared here in western North Carolina; they typically avoid people and your chances of being fatally injured by a black bear are incredibly slim–right there with being struck by lightening.Still, the black bears that wonder near populated spots like Pisgah along the parkway are often fed by tourists and lose their fear of humans. Not only that, but they even expect people to be food dispensers. Not good. As we say around here, “a fed bear is a dead bear” because feeding bears leads to aggressive behavior and the poor creature’s eventual euthanization.
But I digress!
Hazel and I reached the summit and were happy to find that we were alone. Pisgah’s summit can get very crowded as there really isn’t a lot of space–only a large viewing platform next to the massive tower.
When we arrived on site, the summit was surrounded in clouds.
I briefly considered operating from the viewing platform, but knew I would have to cope with a lot of curious hikers while trying to operate CW. Since I’m not a good multitasker, I decided to do what many SOTA activators do: carefully pass under the tower and find an activation spot on the other side of the summit.
Hazel and I found a small overgrown trail used primarily by those working on the tower. I deployed my station in a small clearing.
For this activation, I chose my Elecraft KX2 and paired it with the Chameleon CHA MPAS Lite which has quickly become one of my favorite SOTA antennas.
I deployed the CHA MPAS Lite perhaps 15 feet away from my operating spot, in the middle of a spur trail. I was able to extend the 17′ vertical without touching any branches. I rolled out about 20-25′ of counterpoise wire along the ground.
After setting up, it dawned on me that I’d forgotten my clipboard. No worries, though! I simply flipped over my GoRuck GR1 pack and used the back as an operating surface.
On The Air
Not only was this a summit activation, but also a park activation–indeed, a two-fer park activation at that! The summit of Mount Pisgah is in both Pisgah National Forest (K-4510) and Pisgah State Game Land (K-6937).
If I’m being honest here–since I’m not a “numbers guy” and don’t follow my activation counts closely each year–it’s very tempting not to announce or count this activation in both the SOTA and POTA programs since K-4510 and K-6937 aren’t rare entities. The main reason for this is because, back home, I end up doing double entry with my logs: loading them via the SOTA online log submission tool, then entering them in N3FJP or TQSL for submission to the POTA and WWFF programs. It can be very time-consuming doing this.
I am working on a way to “massage” the ADIF file data so that I can submit it to both programs with less effort.
But, of course, I announced the activation on both SOTAwatch and the POTA site. At the end of the day, I’ve never *not* announced a dual SOTA and POTA activation because I can’t help but think it might offer up the sites to a new POTA hunter. It’s worth the extra log entry later.
Another plus with activating a site in two programs is that you’ll likely be spotted in both thus increasing your odds of logging the necessary contacts to validate your activations.
Turns out, snagging valid activations that Tuesday morning was incredibly easy. And fun!
Fabulous conditions!
I started on 20 meters CW and logged fifteen stations in eighteen minutes. The band was energized because not only did I easily work stations from France, Slovenia, and Spain in Europe, but also stations all over North America from the west coast to as close as the Ohio valley and into Canada.
I wanted to play a little SSB, so I moved to the phone portion of 20 meters and spotted myself on the SOTA network. I worked five stations in eight minutes. Fun!
Next, I moved up to the 17 meter band and stayed in SSB mode. I worked five more stations in nine minutes. Had I only activated this site in SSB on 20 and 17 meters, I could have obtained both a valid SOTA and POTA activation in 17 minutes.
Even though I knew I needed to pack up soon, I decided to hit the CW portion of 17 meters before signing off. I started calling CQ and was rewarded with sixteen additional stations in eighteen minutes.
Phenomenal!
All in all, I logged 41 stations.
Here’s the QSO Map of my my contacts–green polylines are CW contacts, red are SSB (click to enlarge):
A welcome interruption!
If you watch my activation video, you’ll note that as I moved to the 17 meter band and started calling CQ, another hiker popped in and introduced himself.
Turns out it was Steve (WD4CFN).
As Steve was setting up his own SOTA activation on Mount Pisgah next to the observation deck, his wife, Patty, heard my voice off in the distance giving a signal report.
Steve and I had a quick chat and coordinated frequencies so we wouldn’t be on the same band at the same time and interfere with each other.
After finishing my activation, I stopped by the observation deck and spent some time with Steve and Patty as Steve finished his SOTA activation and packed up his gear.
Steve was also using an Elecraft KX2 and strapped his telescoping fiber glass mast to the side of the observation deck to support a wire antenna. Very effective!
Hazel and I hiked back to the trailhead with Steve and Patty. It was so much fun talking ham radio, QRP and SOTA with kindred spirits. What an amazing couple!
Steve and Patty were actually on a multi-day camping trip in WNC and planned to hit two more summits by end of day. In fact, I got back to the QTH *just* in time to work Steve (ground wave!) at his second summit of the day. It was fun hunting someone I had just spent time with on a summit!
Steve and Patty: Again, it was a pleasure to meet you both!
Hazel and I both needed a little trail time that Tuesday morning. Hiking to the summit in the low clouds, taking in the views, enjoying a stellar activation and then meeting new friends? It doesn’t get any better than this.
I’ll say that I do love the Elecraft KX2 and CHA MPAS Lite combo. It makes for a compact and effective SOTA pairing that can be deployed so quickly.
A couple months ago, I ordered a SOTAbeams Tactical Mini fiberglass telescoping pole. I plan to pair it with my QRPguys tri-bander kit antenna.
If I’m being honest, though, I find that the CHA MPAS Lite is so quick to deploy–like 2-3 minutes tops–I’ve yet to take the Tactical Mini and Tri-Bander to a summit. No worries, though, as I will eventually deploy this pair on a summit. Admittedly, I need to work on my mast guying skills in advance–let’s just say that I’m still in that awkward stage of struggling to manage each guy line as I try to keep the Tacmini vertical during deployment. I welcome any tips!
Many thanks to my friend Ollie–an SWL in Germany–who shares the following guest post:
German spies are eavesdropping on you!
I recently made the first all-night listening sessions at the German North Sea coast for this year. On the night of June 10th/11th I picked up 2 POTA SSB activations over here and I thought you guys might find it mildly interesting what that sounds like here. 🙂 Condx were just going down from “slightly elevated” to “regular solar minimum” values that evening.
RX was an Icom IC-705, antenna is a 10m/33′ lazy monopole (running 10m wire vertically up a fiberglass pole, no counterpoise, no matching network, balun, flux capacitor, just a wire and pretty conductive ground).
Video: KI5OLV activating K6574 (Lower Neches Wildlife Management Area, TX), around 1:40 UTC
Video: W8CFS activating K-1552 (Warren Dunes State Park, MI), around 23:00 UTC, condx to the stateside were dipping at that time
I don’t know that W8CFS had brought to his park, KI5OLV brought an IC-7100 and was running its 100W into a hamstick antenna on his truck. Nothing to learn from that really, I’m just happy I can hear y’all! 🙂
QRP radios, product announcements, reviews, news and more. Low power amateur radio fun!
Please support QRPer by adding us to your whitelist in your ad blocker. Ads are what helps us stay online. All of our ads are ham radio related--no junk, we promise! Thank you!