Tag Archives: Kits

WA3RNC’s TR-25 and upcoming TR-45L transceiver kits

Many thanks to a number of QRPer readers who note that WA3RNC has recently introduced the TR-25 CW Transceiver Kit and announced the upcoming TR-45L QRP Transceiver Kit.

Here’s the info about the TR-25 from the WA3RNC website:

Here is a compact but powerful 2-band CW transceiver kit that uses no tiny pushbuttons, and without those seemingly endless and hard-to-remember back menus. There is a knob or a switch for every function!

    • Size 5 ½ X 3 ¼ X 1 ½ less protrusions, weight 10.6 Oz
    • Full band coverage of 40 and 20 meters
    • About 10 watts output with a 14 volt power supply
    • 5 Watts minimum output with a 10 volt supply
    • 4 Watts output with an 9 volt supply
    • Optimized for operation from 3 series-connected 18650 Lithium cells
    • RIT tunes + and – 5KHz
    • Blue OLED display reads frequency to 10 Hz and RIT offset
    • Built in Iambic keyer is adjustable 5 to 35 WPM with front panel control
    • Separate jacks for straight key and paddles; Always ready for SKCC contacts
    • Operates on 9 to 14 volts, < 90ma receive, about 1 Amp Xmitt at 10 volts
    • Selectable tuning resolution steps of 10, 100, and 1000Hz
    • Low battery indicator with internal adjustment 9 to 12 volts
    • Front panel adjustable RF gain control
    • Front panel TX power control; Adjustable from 0 to 10 watts (@14V)
    • Rugged TO-220 FET RF amp can deliver 5 Watts key down for 5 minutes
    • Signal quality blue LED, RIT warning orange LED, Low battery red LED
    • More than enough audio to fill any room with an external speaker
    • Excellent receiver sensitivity with MDS of -132dBm (0.06 microvolt)
    • Very effective receive AGC prevents ear damage with strong signals
    • Transmitter harmonics and spurs -58dB, meets FCC specs
    • CW sidetone is the actual transmitter signal as heard by receiver
    • Match the received signal tone to the sidetone for perfect zero beating
    • Sharp IF filter; Better than 300 Hz at the -6dB point, plus 700 Hz audio filter
    • Over 200 machine placed SMT parts, and about 55 user installed parts
    • All critical circuits are factory pre-aligned and calibrated
    • No endless “back menus”; There is a control or switch for every function
    • Options include pre-wound toroid coils, precision optical tuning encoder, and complete factory assembly

Price is $250 or you can add pre-wound toroids for $18, a precision optical encoder for $30, or for $310 you can purchase this kit fully assembled and tested. Click here to check it out.

Here’s the info about the TR-45L from the WA3RNC website:

    • TR-45L is a 4-band 5-watt CW transceiver covering the 80-75, 40, 30, and 20 meter bands.
    • Full band coverage is provided, with the transmitter optimized for the CW band portions.
    • The receiver is provided with both narrow and wide band IF filters, and CW and SSB detectors.
    • An illuminated front panel meter shows “S” units on receive, and power output (forward or reverse) while transmitting. The meter also will display the battery state of charge.

    • A “High SWR” warning indicator will illuminate if the antenna SWR exceeds about 2:1.
    • The transmitter power output is adjustable from less than ½ watt to 5 watts with a front panel control.
    • RIT is provided to adjust the receive frequency up to + or – 5 KHz from the transmit frequency.
    • Two VFOs for each band are provided with recallable memories.
    • A built-in keyer is adjustable from about 5 wpm to 35 wpm with a front panel speed control.
    • Separate straight key and keyer paddle inputs are provided on the front panel.
    • A front panel adjustable sharp notch filter is provided to null out interference.
    • A front panel receiver RF gain control is provided.
    • Operates from a 12 volt nominal power source requiring up to 1.3 amperes on transmit, and about 130 ma on receive. A front panel power on – off switch is provided.
    • Tuning speed is easily settable from 1 Hz to 1 KHz per step.
    • A selectable dial lock is available to prevent inadvertent frequency changes.
    • There is a knob or switch for every function – no confusing back menus!
    • Size 8-1/2” wide, 5” high, 3” deep Weight about 2.8 lb with Internal Batteries

Beta testing is continuing…73 de WA3RNC

 No pricing or availability has been noted yet.

I life the look of both of these kits. I love the fact that you can buy pre-wound toroids as this is often one of the more complicated parts when building radios. Also, I’m pleased to see that all SMD components are pre-installed and that all critical circuits are factory pre-aligned and calibrated. That will make this kit accessible to a much larger kit building audience.

Click here to check out the WA3RNC kits!

Frank builds the EGV+ Three Band QRP CW Transceiver Kit

Many thanks to Frank Lagaet (ON6UU) for sharing the following guest post:


The EGV+ Three Band Transceiver Kit

by Frank Lagaet (ON6UU)

Another EA3GCY kit has seen daylight.  The EGV+ is ready for you all.

It was beginning 2021 I got word a new kit from EA3GCY was ready and distribution could start.  After a successful build of the DB4020 I did not need much time to decide to buy this kit,  a week later the kit arrived at my QTH.  As weather was good I did not start immediately building but then winter kicked in, with snowfall and frost,  perfect time for some quality time and building the kit.

What do you get ? 

The kit has a general coverage receiver from 6 to 16MHz,  it has a keyer built in,  has RIT without limit,  requires only 0.25A on RX and smaller than 2A on TX.  Dimensions are 18x14cm and weight is 0.3Kg.   It is CW only, able to produce 8W on 40 and some 5-6 on 30 and 20.  The kit has an AB class amplifier.   Spurious is below -50DBc.  The receiver is a heterodyne type balanced mixer,  sensitivity is 0.2µV minimum and the CW filter is some 700Hz wide,  the AGC is on audio.   Furthermore the transceiver is equipped with both output for loudspeaker as for a headset or earbuds.

The kit arrived in a brown envelope and in that envelope I found a well-packed packet of plastic bags and the printed board well packed in bubble wrap.  Around that another layer of bubblewrap.  Safe!!

All plastic bags were checked,  all needed stuff was there, super,  well done Javier.

All components were installed in about 10 hours “relax max style”,  if you have built some kits already you can easily do this one,  all elements are far enough out of each other,  the board is not overcrowded at all.  Some attention is needed when soldering the IC’s and display but even that is a piece of cake.   Be careful when installing the SI5351 module.

Winding the toroids,  just follow what is in the manual,  it is not that hard to do,  I don’t understand what many find so difficult.  Just take your time and don’t rush into it.

I got the transceiver up and running quite quick. I didn’t install a speaker in the cabinet but decided to go for a transceiver where no speaker is in. If I want to use it on SOTA or GMA I don’t need the extra weight and can take earbuds with me.  So I installed the speaker connector on the board.

I made connections towards the CW key and CMD push button with jumper cables which fit exactly on the headers Javier supplies,  a little glue to keep them in place is also added afterward.  For easy operation I mounted the CW key connector and CMD pushbutton on the front of the transceiver.

Do to be able to withstand high power nearby stations,  I mounted the EGV+ in a homemade box which is made of printboard.  The box should be a Faraday cage to keep all QRM out.  If you buy a box, buy one in metal.  I added a laminated front and back which make the transceiver look kinda cool.   Now you can also buy a box from qrphamradiokits.

Alignment

The alignment is done on 40 meters:  crank up the volume and start turning the 2 coils (L1 and L2)to maximum volume.  Be careful to handle these with caution and don’t use metallic screwdrivers.  Connect an antenna after you’ve done that and do the alignment of the coils again for maximum volume.  Find a station on 40 and redo the alignment once more.  You should already have good results now.

P1 Set sidetone level to your liking.

P2 Set the hangtime of the relay after you’ve been on air–fast fingers will need a quick release. Set this to your liking.

P3 Connect a power meter between a dummy load and the transceiver,  set power on 40 to some 8 Watts.   Measure on 30 and 20 meters,  you should find some 6-7W there.  Don’t set the power to full if you want a long life for the final in the transceiver.  Mine is set for 6W on 20,  resulting in some 7.5W on 30 and some 8.4W on 40.  I think I will reduce even more.

P4 Set to max,  it is the RX-attenuator.

P5 Don’t pay too much attention to the signal meter,  mine is set at 6/8 of the potmeter’s range.  It is only an indication.  If you don’t want the S-meter then you can do a start-up sequence with the tuning knob.

These are in fact the alignments you need to do inside the transceiver.  You should also check Xtal calibration and BFO,  these are settings which you need to do in the set-up.  Don’t forget to write all down when you have maximised these settings. If you do a reset, all these values are erased too so be carefull.

The complete CW 3 bander

Well,  you get a 3 band transceiver which you build yourself,  it has RIT and XIT,  has 4 memories on the KB-2 keyer,  speed of CW can be set between 0 and 50WPM and you can set the KB-2 as a beacon which can be handy too.   The EGV+ provides you with 3 bands which are almost for certain insurance for QSOs when going on SOTA,  GMA or POTA.

You may have noticed some resemblance with the DB4020. You are right as some parts are the same on the board.   The designer worked on the same platform to make two completely different transceivers.  The result is twice the fun for kit builders.

I made a box myself since, at the time of ordering, there were no boxes available,  here’s the result.

The naked printboard transceiver.

After adding a laminated front to the trx,  it looks now like this.  You can see it is not made professionally but I like it.

The paper which is between the plastic was first cut out for the display before placing it in the plastics so giving an extra protection to the display.

I have also made a retractable stand for it,  when folded back it is next to the bottom of the transceiver,  when folded out the stand is under the front of the transceiver,  the retractable stand is also made out of printboard.

It’s an easy-to-make stand–take some old printboard and solder it together.   The pictures explain it all, I think.

Meanwhile, I already made a lot of QSOs with this small (16 X 20 X 6 cm) QRP transceiver.   The power out is better than expected and even reduced so all bands are within QRP regulations.

Finally, I’d like to say that I’m not sponsored to make this kit,  I don’t have any ties with the kit producer, nor do I gain money with building it.   If people would like to have this QRP kit built for them I’m willing to help out in populating the board and aligning it.  A ready made box is available with qrphamradiokits.   This also stands for the DB4020 which I made earlier.

The kit comes for 125€ without shipping costs.  Many European countries will have no shipping costs at all.  The enclosure comes for 50€ all included. This means you have a complete 3 band radio for about 200€.  In my eyes, this is a pretty good deal.

Info about the kit can be found here :   Home – Página web de ea3gcy (qrphamradiokits.com)

And here : EGV+ Three band CW – Página web de ea3gcy (qrphamradiokits.com)

60 Meter “Woodpecker” QRPp Transceiver Kit From Breadboard Radio

I’ve just received the following announcement from Breadboard Radio. Looks like a fun build and quite useful QRP radio for the 60 meter band!


60 METER “Woodpecker” QRPp Transceiver Kit From Breadboard Radio

Breadboard Radio has just released the “Woodpecker” a 60 meter low power CW transceiver for the 60 meter band. The Woodpecker features a crystal controlled transmitter with a 500 milliwatt output on 5332 kilohertz, sometimes referred to as channel 1. The transmitter provides sidetone, receiver muting and QSK with delay.
The Woodpecker’s direct conversion receiver has an adjustable bandpass filter, attenuator and an audio amplifier suitable for headphone level output plus a selectable low / high filter which helps with band noise and static crashes.

The designer, W4FSV has made multiple contacts using a 160 meter inverted L antenna including many from 500 to 1000 miles. The kit is complete with all parts including a cabinet and attractive front panel plastic decal. A two channel 40 meter version will be available soon.

More information is available at www.breadboardradio.com

The introductory price is $49.95 US.

Click here to read the full PDF manual (note this is a large file).

Video: QRP Labs QCX-mini 5W CW transceiver–now available to order

Hans at QRP Labs has just posted a video of the new QCX-Mini 5 watt transceiver kit. It looks like another thoughtful design:

Even though I’ve yet to build my QCX+ (!!!), I just ordered the QCX-Mini. This little kit will be a challenge for me–even though all of the SMD components are pre-populated, it’s still a tight board and requires some fancy toroid work!

Still, I’m buying it to support QRP Labs’ work and because I love the challenge of building kits. This one is awfully cute and I’m pretty sure I’ll use it to claim a summit!

My entire QCX-Mini kit with enclosure set me back $86.99 US with shipping and tax included. How could I resist? (Don’t answer that, please.)

Click here to check out the QCX-Mini product page. 

QRP Labs projects QCX-Mini CW Transceiver Kit availability in December 2020

I’m not quite sure how Hans Summers at QRP Labs has the time to innovate at the pace he does–especially during a global pandemic–but he believes he will have the new QCX-Mini CW QRP transceiver available for purchase in December 2020.

Hans shared the following message via the QRP Labs Groups.io page (click here for the full message):

Hi all

Quite a lot of people have been asking about QCX-mini.

QCX-mini manufacturing has slipped a couple of weeks longer than my estimated “4 weeks”. But all is going well now…

[…]Latest problem is apparently my 5-in-1 top PCB design… normally PCBs are panelized and SMD’d in a set of 6 (or more) like that, then separated later. But the top PCB design is such that the amount of cut away material is too much to be able to break apart the boards without damage. So the factory had to come up with a different method for manufacturing it. I tried to understand what they are doing but I gave up, anyway in reliably assured all is well.

The 1000 enclosures are all finished, cut, CNC’ed, drilled, laser etch printed, packed.

Current estimate is that the PCB assembly (SMD soldering) will be completed on 17-Nov-2020. It’s the last step in the manufacturing process, everything else is done… then the boards will ship to me.

So, still on track for 1,000 Christmas stocking goodies.

73 Hans G0UPL
http://qrp-labs.com

Although I look at this kit and think, “yeah, like I need another portable QRP transceiver!” I’m nearly 100% certain I’ll buy it.

For one thing, I love building kits and am very happy to see that the surface mount components will be pre-populated.

I purchased the QCX+ and, indeed, plan to review the build and transceiver for RadCom. I’ve almost been “savoring” this build for a nice stretch of cold winter evenings.

Frankly I’ll buy and build the QCX-Mini because I love supporting mom and pop innovators here in our ham radio world.

Click here to check out QCX-Mini updates at QRP Labs. Of course, we’ll post an update when the QCX-Mini is available to order.

An Introduction to the uSDX transceiver kit

Many thanks to Pete (WB9FLW) who shares the following article by Bob (KD8CGH) regarding the uSDX transceiver kit.

I reached out to Bob who has kindly given me permission to share his article on QRPer:


An Introduction to the uSDX

by Bob Benedict (KD8CGH)

There is a new open source, home brew multi band, multi mode QRP transceiver that grew out of the QRP Labs QCX. Through some serious wizardry  it retains an efficient class E RF amplifier for SSB and digital modes. It crams impressive SDR capabilities into an Arduino.

This has an interesting international development process conducted on  https://groups.io/g/ucx/topics with contributions by many, including the usual gang of suspects: Hans Summers G0UPL, Guido Ten Dolle PE1NN, Barbaros Asuroglu WB2CBA , Manuel Klaerig DL2MAN, Kees Talen K5BCQ, Allison Parent KB1GMX, Jean-Marie T’Jaeckx ON7EN, Ashhar Farhan VU2ESE,  and Miguel Angelo Bartie PY2OHH. I apologize to the many others whose names I didn’t list. A summary is in the WIKI https://groups.io/g/ucx/wiki.

The basic work uSDX appears to have been accomplished by Guido Ten Dolle PE1NNZ. It uses pulse width modulation of the PA supply voltage to transmit  modes other than CW while retaining class E efficiency and uses a direct conversion SDR receiver.

The basic idea behind Class E nonlinear amplifiers is that transistors have little loss when they are switched fully on or off. The losses occur when devices are limiting power flow in linear amplifiers. The idea behind a Class E amplifier is to use transistors in a switching mode to generate a square wave to drive a resonant circuit to generate RF power.

This method is used in the popular QCX QRP CW transceiver kit line developed by Hans Summers and sold through QRP Labs  https://qrp-labs.com/.  More than 10,000 of these great transceiver kits have been sold (I built one). There is a good discussion of the circuit and particularly of the class E amplifier in the excellent QCX documentation https://www.qrp-labs.com/images/qcx/assembly_A4-Rev-5e.pdf.

The QCX was the base for the QCX-SSB which starts with a QCX and modified the circuit and software to add SSB capabilities. The wizardry that  Guido accomplished uses pulse width modulation of the PA supply voltage to control the amplifier in an Envelope Elimination and Restoration (EER) technique  https://core.ac.uk/download/pdf/148657773.pdf. To generate SSB a DSP algorithm samples the  audio input and performs a Hilbert transformation to determine the phase and amplitude of the complex signal.  The phase changes are transformed into temporary frequency changes which are sent  to the  clock generator. This result in phase changes on the SSB carrier signal and delivers a SSB-signal with the opposite side-band components is attenuated.

On the receive side a direct conversion SDR receiver is used with the I and Q signal digitized and all further processing carrying out digitally. Attenuators are included to help not overload the ADC range.  Documentation is at  https://github.com/threeme3/QCX-SSB .  In addition to a good description of the theory and hardware mod there is also a good description of the software command menu.

From there development took off in several directions. One is by Barbaros Asuroglu WB2CBA  and Antrak that uses through hole components (mostly) and replaceable band boards that  hold the low pass filter and band dependent class E amplifier components (an inductor and capacitor). Barb also includes boards designed to be a case top and bottom, battery pack and a PA.

Another development track by Manuel Klaerig DL2MAN uses SMT components in a stacked board layout and has a relay switched band pass board https://groups.io/g/ucx/message/1596  and  https://groups.io/g/ucx/files/DL2MAN uSDX-Sandwich Files. A new revision has been released that uses serial resonance class E amp design and easier to obtain relays, https://groups.io/g/ucx/files/DL2MAN uSDX-Sandwich Files with new Serial Resonance Class E Multiband Circuit .

Other development streams include one by Kees Talen K5BCQ https://groups.io/g/ucx/files/K5BCQ uSDX Board Schematics and Jean-Marie T’Jaeckx ON7EN https://groups.io/g/ucx/files/QCXV4.zip.

I built the variant designed by Barbaros Asuroglu WB2CBA   and I’m pleased with it’s performance. I ordered 10 main boards and 40 LP filter band boards PCBs from PCBWAY, but now you can also purchase single boards sets from https://shop.offline.systems/.

I also designed and 3D printed a case for the transceiver and a small box to carry band boards. Info at https://www.thingiverse.com/thing:4582865 and at https://www.thingiverse.com/thing:4587868 and also in the files section https://groups.io/g/ucx/files/3D printed case for Barb WB2CBA V1.02.

In an example of hams collaborating at its finest, Hans Summers  announced on 9/11/2020 that his new QCX mini product, a QCX in a smaller package,  will include a daughter board that can be used to give the QCX mini a uSDX like SSB capability. The QCX mini has the same circuit as the QCX but uses SMD components packaged it into a two board stack that is less than half the volume of the original QCX. The mod is unsupported by QRP-LABS but may be supported by the uSDX group.

http://qrp-labs.com/qcxmini.html 

More information at https://groups.io/g/ucx/topics and don’t forget the WIKI https://groups.io/g/ucx/wiki.

73

Bob,  KD8CGH


Many thanks again, Bob, for sharing this excellent uSDX introduction. Thanks again for the tip, Pete!

Pete also notes that there is a very active uSDX experimenters discussion group on Groups.io with over 100 members: https://groups.io/g/ucx

The new Inkits Easy Bitx SSB TCVR kit

Many thanks to Robert Gulley (K4PKM) who shares the following news from Inkits:

This is to inform all our valued subscribers that we have launched the much awaited easy bitx kit and few customers have already bought the kit.

The easy bitx kit works on a single band and can be built
for 20mt 40mt or 80mt bands.

This is an enhanced bitx design from the previous versions.
There is a complete manual available with link below.

Easy Bitx Version 1

Complete details are provided in the construction manual to build the kit in 15 Steps.

There are 15 individual kits packets provided to assemble the kit step by step.

The si5351 BFO VFO is provided with the kit in working condition. Only The IF frequency has to be set as described in the manual.

The easy bitx kit is an excellent educational kit for new Hams
who are wish to learn how to build a single band transceiver.
And later use it on the air.

The bitx in various kits and individual mods has been build by thousands of hams world wide, so this way easy bitx is a perfect kit for newbies.

The complete kit can be purchased from our website.

Presently we are shipping world wide with DHL Express.

Adding CW mode to the EA3GCY DB4020 Dual-band 40 and 20M QRP Transceiver Kit (Part 2)

Many thanks to SWLing Post contributor, Frank (ON6UU), who shares the following guest post which expands upon his previous DB4020 article:


The EA3GCY DB4020 transceiver now has CW mode

by Frank Lagaet (ON6UU)

After telling you all about the DB4020 SSB build I’m here with the CW part of the kit,  let’s say this is part 2.  At a certain moment Javier let me know the CW interface kit was ready for shipment and some week later it was delivered to my QTH.

Again, a well packed kit arrived in a brown envelope, components and boards well packed in bubblewrap.  I found even a board I did not expect which can hold a push button,  a switch and the connector for your morse key.  Javier thinks of everything it seems!

Unpacking the bubblewrap gave me this result,  all components in 2 bags.  In the bigger bag another 2 bags with 2 printboards,  one for the CW interface,  one for the CW filter.  Great !!  Checking the material bill resulted in all components there,  another thumbs up.

I started, of course, immediately building it because I wanted CW in the transceiver as soon as possible.  I don’t do much in SSB mode anymore and I already started missing CW on the DB4020,  so I started my KX3 to listen to while I was populating the boards.  I never thought CW was going to have this impact on me! …. ..

I started building the CW interface,  again starting with all small items.  I soon saw that the 2 relays which need to be soldered in were ideal to protect all components when the board is upside down, so I soldered them in very quickly.  I then soldered in all other components ending with the elco’s.

Next phase was the CW filter.  This board is small and came together in a blink of an eye, no problems there, the long legs of the 3 and 4 pin headers went in last.

The following day, I made all wire connections and soldered a 13pin connector,  leaving one pin out since I want to have the option to choose the width of the CW signal I’m listening to.  By cutting the FL CW + pin and adding an additional switch, I have now 500Hz or 2400Hz.  Great option, for very little effort and simple.  Another thumbs up here.

Now it was simply a matter of inserting the sub boards in the main board and all should be working.  And it did!  Hurray!  The 500Hz filter works perfectly,  filtering away all above or below stations nearby my operating frequency.

This is the result of the soldering work,  2 small boards which need to be inserted in the main board:

The CW interface still needs the 13pin header of which I cut one pin and mounted a switch to have the 2400Hz width.

The IC you see in the middle of the CW interface is the KB2 keyer which gives you several functions like 4 memories and beacon mode.  The 4 potmeters are used to set the level on 40 and 20 meters,  to set the delay between TX and RX switchover and to set side tone monitor level.   The keyer also provides functions as keyer mode A or B,  straight key function and can be set for speeds between 1 and 50WPM.   WPM speed can be set in 2 different ways.  Handy!

Here a picture of the CW filter inserted on the main DB4020 board.

The CW interface is inserted at the side of the main board,  notice the 2 wires which go to the switch to allow switch-over between 500 and 2400Hz.

(Wiring still needs to be cleaned up in this picture.)

Finally, the result:  a good working multimode QRP transceiver with 2 bands.  It should be possible to make close to medium range with it as well as DX,  even with QRP power.

And while I was building I also made a new key for this radio,  it is made out of a relay and cost nearly nothing,  looks good doesn’t it ?  hihi.

Homebrew key

The key, when in practiced hands (fingers hi), can do 50 WPM without a problem. My friend HA3HK does without blinking an eye at 40WPM with this kind of key and tells me that he can go faster if needed.  Me? I’m going it a bit slower.

Battery pack

As this radio is only using little power (0.4A in RX,  1 to 2A in TX depending the power you set it) I thought,  let’s make a battery pack for the radio.

The first plan was installing it in the box.  I did not do that because the batterypack is also powerful enough to feed my KX2 and other QRP transceivers. Since I can use it with all of them, a loose battery works out better for me.

I started with an old laptop which had a broken screen and some other malfunctions,  but still had a good battery,  although I needed the battery connector of course.  A piece of wood to mount the connector on was my next goal.  And since I still have another laptop using the same batteries, I can charge the battery without problems.  Simple, but good and it weighs much less than a gel cell battery.

The battery provides me with 12.5V and some 5Ah.  Enough to last for hours on RX and for sure good enough to activate 2 SOTA sites in one day.   It doesn’t look great but works great– that is what matters and to test it was more then good.  Next will be getting the battery pack in a nice box.  Better to re-use stuff than throwing it away I’m thinking.

I need to do something about the cover of the OLED display,  there is still some work there to make it look nicer.

Some video can be seen on YouTube :

Finallym I’d like to thank you all for reading my articles about the DB4020. I had big fun soldering, tinkering with the box, making the key, and batteryholder/batterypack.  My Hungarian friend HA3HK told me it looks a bit like a spy radio. …. ..

I also include one more time the link where you’ll find this kit :

https://www.qrphamradiokits.com/

73 TU ee

Frank

ON6UU


Thank you so much, Frank. No doubt, you had a lot of fun putting this excellent little kit together.

Implementing a filter switch was a fantastic idea and, obviously, not terribly difficult to do.

Based on the videos, the DB4020 has a low noise floor and very good receiver characteristics. I’m impressed that the CW portion of the radios has so many features as well, such as a memory keyer and beacon mode.

I also love how you reused that 5Ah laptop battery! I think that could almost give you a full day of SOTA activations at those consumption levels!

Thanks again for sharing this with us, Frank! We look forward to your future articles!

Dave Benson’s new Phaser Digital Mode Transceiver kit

Many thanks to QRPer, Pete (WB9FLW), who writes:

Just in time for Christmas, Dave Benson is back with a great new line of Monoband Digital Mode Transceivers! 40 & 80 Meters is available now 30 & 20 Meter Rigs to follow shortly.

Time for me to contact Santa Claus and update my Christmas Wish List 🙂

These are Single Signal Phasing Rigs not DSB.

Pete WB9FLW,

http://www.midnightdesignsolutions.com/phaser/

http://www.midnightdesignsolutions.com/phaser/Phaser-40%20Instructions%20(Rev%20A).pdf

WOW! Thanks for the tip, Pete! I think I might give Santa a hint! This looks like a fun kit!