Category Archives: QRP

First video of a production Icom AH-705 ATU

I just discovered the following video by VUJ Lab. on YouTube showing the AH-705 ATU being unboxed, connected to the IC-705 and even operated a bit.

The video is in Japanese, but frankly it’s easy to understand what’s going on. It’s the first time I’ve actually seen a production AH-705 in action.

Click here to view on YouTube.

POTA Field Report: Pairing the FT-817ND with the EFT Trail-Friendly antenna at Lake Norman

Last week, I thoroughly enjoyed taking the Yaesu FT-817ND to the field.

While the ‘817 lacks features I’ve come to appreciate during field activations like voice and CW memory keying, it’s still an incredibly fun and capable radio.

Last Monday (January 18, 2021), I had an opportunity to visit Lake Norman State Park (K-2740) and perform an activation around lunchtime. Lake Norman is convenient to my hometown of Hickory, NC and these days I typically spend at least a couple nights there doing a little caregiving for my parents. It’s rare my schedule is clear at lunchtime to fit in an activation–typically it’s later in the afternoon.

As with my recent activation at Lake Jame State Park, I paired the Yaesu FT-817ND with my Par End-Fedz EFT Trail-Friendly 40/20/10 meter resonant antenna.

Gear:

It was an incredibly fun activation and one of the few recently where I racked up some great QRP contacts across the 20 meter band before moving to 40 meters.

Here’s my QSOMap of the activation (red lines are phone, green are CW):

As with most of my activations, this one was relatively short. Rarely do I have more than 45-60 minutes of on-air time during a POTA sortie.

I also made another real-life, real-time, no-edit video of the entire activation. If interested, you can view it via the embedded player below or on YouTube:

I’m long overdue a multiple park run, so will start strategizing soon! The Parks On The Air program has also added a few new park in North Carolina, but none appear to be in the western part of the state.

Oh, and Phillip, thanks for prompting me to take the ‘817 to the field again. It is a gem of a rig and I think it might suit your needs very well!

73,

Thomas (K4SWL)

POTA Field Report: Activating Lake James State Park (K-2739) with the Yaesu FT-817ND

One question that often faces newcomers to the hobby is: “Should I buy a QRP or a 100W transceiver as my first rig?

That is a very deep topic, actually, and one to explore in a future post. A 100 watt transceiver will certainly give you more options as they can often pump out 100W or be turned down to 1 watt. If you’re a phone operator only, that’s got some serious appeal. Then again, if you’re operating POTA or SOTA where you are the DX, power–while still important–is much less so than, say, if you were at home trying to work DX.

Again, a deep topic for another post because there is no right or wrong answer.

One of our readers (Phillip) reached out to me a couple weeks ago and asked if the Yaesu FT-818 would make for a good first HF rig. He liked the portability factor, the build quality, the HF/VHF/UHF multi-mode coverage, and the overall flexibility of the rig as a field radio. His goal was to do POTA activations.

We had quite a few emails back and forth about the pros and cons and I decided it might make more sense to simply take my Yaesu FT-817ND (which is nearly identical to the FT-818) to the field and activate a park in both SSB and CW. Since I knew he wouldn’t necessarily have an external antenna tuner from day one, I paired the FT-817 with my resonant 40/20/10 meter end-fed antenna.

Lake James State Park (K-2739)

On January 17, 2021, I pulled into my favorite part of Lake James State park and quickly set up my station. I only had about one hour to complete my activation, so knew this would be a very brief excursion. Since I actually had a minimal amount of gear, it was a quick setup.

Gear:

Since I deployed a resonant antenna, there was no tuning or matching involved which not only makes the most of your 5 watts (in that it’s more efficient), but also saves a bit of time in set up and tuning up.

You might note in the video below that my FT-817 has an accessory board attached to the top: G7UHN’s 817 Buddy Board prototype.

I’m testing this prototype at the moment, but didn’t need to employ it at Lake James since it’s really useful when the rig is on your lap or on on the ground. It essentially gives you top-mounted controls and a larger display to read front panel information from above–incredibly useful for SOTA and proper in-the-field activations. Andy’s v3 board will include a memory keyer–I can’t wait for that one!

Since I had Internet access at this park, I used my Microsoft Surface Go logging tablet to spot myself to the POTA network. I started calling CQ on 40 meters phone (SSB) and within six minutes logged eight stations. Not bad for 5 watts and a wire!

Next, I moved to CW on 40 meters and started calling CQ POTA. The POTA spots page auto-spotted me via the Reverse Beacon Network in short order. In eight minutes, I worked six more stations.

I then moved to twenty meters which was essentially dead, so I called it quits a bit early. I needed to pack up and head to my next destination.

Here’s a QSOMap of this short activation (red polylines are SSB and green CW):

I also made one of my real-time real-life no edit videos during this activation if you’re interested:

Truth is, each time I use the FT-817, I love it more. Sure it’s only 5 watts, has no ATU, has a small display, a clicky T/R relay, and questionable ergonomics, but it is a keeper for sure. Even after 20 years of being in production, it still holds its own and is an incredibly popular radio for good reason.

As I told Phillip, the 817/818 is the Toyota Corolla of the QRP radio world.

The importance of quality cable and connectors

Note that this post was originally published on the SWLing Post, but I feel like quality cable is especially important for those of us who are into field activities like Parks On The Air (POTA) and Summits On The Air (SOTA) where our gear gets a lot of handling and outdoor time.

Two radio accessories I often forget to mention in my posts and reviews are cable and connectors. When a cable functions well, it’s taken for granted and easily overlooked.

You’ll hear me say that a radio is only as good as its antenna and while that’s true, the important link in the system is your antenna cable and connectors. If you have a fabulous antenna and a benchmark radio, but you connect the two with substandard cables, it will create unnecessary losses and even shorts if you’re not careful.

But let’s be honest: it’s easy to cheap out on cables.

When I first started using tabletop receivers and transceivers in my youth, I had a tight budget. When I would go to a local hamfest where I’d find excellent prices on cable assemblies from those accessory retailers who sell a little bit of everything.  You know…the tables with everything from $10 multimeters to $5 blinking lights–? I’d find their prices for cable assemblies too attractive and would grab them.

No more.

Back when I owned my original Yaesu FT-817, I used one of these cables on Field Day and blew my finals due to a small short ono a connector end (if memory serves, braiding was touching the conductor). From that point forward, I decided I’d invest in quality cables.

ABR Industries

At the Hamvention in 2010, I found ABR Industries’ table. The only thing they had on display were cable assemblies and a handful of cable accessories. I picked one cable up and inspected it–I could tell it was good quality. Although I know how to make my own cable assemblies (with PL-259s, at least) I appreciate professionally-built assemblies.

I spoke with the representative that day and learned about their company and how they go about making standard and custom cable assemblies in the USA for the consumer, commercial, and government markets.

Although the price was at least double what I would have paid at one of the discount retailers, I never looked back.

From that point forward, I’ve only purchased ABR cables typically at Hamvention, Universal Radio, or even directly from ABR’s website (when I ordered custom assemblies).

The quality of ABR cables is second to none. I have never had one fail at home or (especially) in the field.

For my QRP POTA activations, I started investing in ABR316 and ABR100 BNC to BNC assemblies. I’m especially fond of the ABR316 assemblies (above) because they’re so resistant to memory when I coil them.

You pay for what you get

I suppose this is on my mind because I’m about to do an assessment and make another ABR order so that my new field radio kits have their own dedicated cable assemblies with correct ends (so I’m also not forced to use BNC or PL adapters for matching).

I’m also replacing some of my 3 foot cable assemblies with SMA connectors to PL-259 for my bank of SDRs. This is a part of achieving one of my goals for 2021. I’ll know then that each receiver will have a quality link to my antenna splitter and antenna.

My point here is don’t skimp on your cable, adapters, or cable assemblies.

If you have the skill to build your own, buy quality components and take your time building them.

If you prefer purchasing pre-made cable assemblies, talk with your local ham radio retailer, or seek out cable assembly houses like ABR Industries. I’d avoid purchasing cheap cables you may find on eBay or Amazon.com, for example. That’s not to say that there aren’t quality discount assemblies out there, I just prefer buying from a company that takes pride in their work and stands behind the quality.

Click here to check out ABR Industries. 

ABR Industries isn’t a sponsor of the QRPer (although I’d love to add them!)–I’m just a long-time customer who is happy to plug their products. I can recommend them without reservation.

I’ve also bought numerous long cable runs, wire, DC cable, ladder line, paracord, and sealant from The Wireman. I also highly recommend them.

ABR isn’t the only quality cable assembly house–there are many others throughout the world. Who do you recommend? Please leave a comment and links to your picks!

POTA Field Report: Three watts, cold winds, and how *not* to calculate antenna length

Last week, I activated Pisgah Game Land and Pisgah National Forest (K-6937 & K-4510)–things didn’t exactly go according to plan.  I still achieved a valid activations–meaning, I logged ten contacts–but I cut my antenna too short.

I this previous post, I describe my mistake and the lesson learned that day.

In short: I cut my wire antenna too short and my KX1 and KX2 ATUs couldn’t find an acceptable impedance match on the 40 meter band. This pretty much forced me to make do with 30 meters and above unless I modified or switched antennas.

The 40 meter band tends to be my most productive band, particularly on days like last Saturday when I’m operating in the latter part of the afternoon.

Maybe it was stubbornness, but I was determined to make a valid activation with that four-feet-too-short antenna.

Gear:

I first hopped on the air with my Elecraft KX1 (above) and logged a few contacts on 30 meters. I then tried 20 meters, but the band was dead.

Eventually, I pulled the Elecraft KX2 out of the bag with the hope it might actually find a match on 40 meters, but as I said in my previous post, that darn physics stuff got in the way.

That’s okay, though. Although the sun was starting to set and I didn’t want to pack up in the dark, I took my time and eventually logged ten contacts for a valid activation. I actually enjoyed the challenge.

I complain about my wire antenna, but in the end, it made the most of my three watts by snagging stations from New Hampshire, Ontario, Illinois, Arkansas and several states in between.

Against my better judgement, I made a video of this activation. As with all of my videos, they’re real-time, real-life, and have no edits. (They also have no ads.)

A few readers and subscribers had asked me to include the odd video where I actually do a full station set up including the installation of a wire antenna–that’s what you’ll see in this video:

At the end of the day, this was still an incredibly fun activation.

This was the first time I’ve ever completed a valid activation only using the 30 meter band.

Next time, though, you’d better believe I’ll cut my antenna to be the ideal length for 40 meters and above!

How long?

If you use a similar antenna with your KX1, KX2, KX3, or other transceiver, I’m curious what lengths you find work best for 40 meters an above. Bonus points for 80 meters. Please comment!

POTA Field Report: Activating the BRP with my new-to-me Icom IC-703 Plus

When my buddy Don told me he was selling his Icom IC-703 Plus a few weeks ago, he caught me in a (multi-year long)  moment of weakness. I asked his price and followed up with a PayPal transaction without giving it a lot of thought. It was a bit of an impulse purchase, if I’m being completely honest, but he definitely gave me a “friends and family” discount.  (FYI: Don is the same enabler that made this purchase happen.)

I’m thinking the IC-703 Plus might be a good first HF rig for my daughter (K4TLI) and, of course, it’ll be fun to take it to the field from time to time.

Of course, the best way to get to know a radio, in my opinion, is to take it to the field. So that’s exactly what I did last week (January 13, 2021).

Blue Ridge Parkway K-3378

Against my better judgement, I decided to make a video of the activation. I mean, what could possibly go wrong operating a radio for the first time in the field? Right–?

I picked out an “easy” park for this activation: the Blue Ridge Parkway.

Although most of the parkway around Asheville, NC, is closed to vehicle traffic, the Folk Art Center is open year round and a very convenient spot for POTA.

Gear:

I paired the IC-703 Plus with my Chameleon MPAS 2.0 vertical antenna. I was curious how easily the IC-703’s internal ATU could match the MPAS 2.0: turns out, pretty darn well!

I started the activation on 40 meters phone (SSB).

Almost immediately, I logged a few contacts and that quickly built my confidence that even the default voice settings were working well on the IC-703 Plus.

I then moved to 40 meters CW and used the CW memory keyer to call CQ (I pre-programmed this before leaving the QTH that day).

Then I experienced a problem: when someone answered my call, my keyer didn’t work properly. For some reason, it was sending “dit dash” strings from both sides of the paddle. I’m not entirely sure what happened but assume there was either a radio glitch or a small short in my paddle cable. After fiddling with the IC-703 for a bit, I pulled out my Elecraft KX2 and finished the CW portion of my activation. (Always carry a spare radio, I say!)

Actually, I assumed since I was using the IC-703 for the first time, there could be hiccups as I did not do a full rig reset prior to putting it on the air–settings were essentially what they were when Don had the radio.

Here’s one of my real-time, real-life no edit videos of the entire activation, if you’re interested:

Back home, I connected my CW Morse paddles up to the IC-703 and it worked perfectly. Even though I checked the connections in the field, I must assume one of the plugs simply wasn’t fully-inserted. It hasn’t repeated this since.

Despite the CW snafu, I’m very pleased with the IC-703 Plus so far. I like the size for tabletop operating and it’s actually surprisingly lightweight.

If you own or have owned the IC-703, please comment!

POTA Field Report: Pairing the Mission RGO One with the Chameleon Emcomm III Portable Antenna

While I tend to use small, field-portable transceivers on many of my Parks On The Air (POTA) activations, I also love using  tabletop transceivers when I have a picnic table available or decide to use my portable table. Tabletop radios often provide more power output when needed and better audio from their built-in speakers.

Although I have an Icom IC-756 Pro transceiver, and an Elecraft KXPA100 amplifier that I can pair with my KX2 and KX3 (or any QRP transceiver for that matter), my favorite tabletop fiel;d radio at present is the Mission RGO One 50 watt transceiver.

If you’re not familiar with the Mission RGO One, I’d encourage you to read my comprehensive review over on the SWLing Post.

In short: it’s a brilliant, simple, tabletop transceiver that’s very happy in the field and a pleasure to operate. My RGO One has the optional built-in antenna tuner (ATU). The rig designer is allowing me to keep this unit on extended loan as I help him evaluate and test updates and upgrades.

While I’ve used the RGO One on numerous POTA activations, I don’t believe I’ve ever made a video of it in use, so I decided to change that last week with another one of my real-time, real-life, unedited (lengthy!) videos of this activation (see video below).

Lake Norman State Park (K-2740)

As I’ve mentioned before, I love activating Lake Norman State Park because it has numerous spots for setting up my gear. While I actually prefer activations that require a bit of hiking, it’s nice from time-to-time to activate a state park that has so many widely-spaced picnic tables under tall trees.  That, and my right ankle is still healing after I twisted it in December, so I’m avoiding any proper trail hiking until it is better.

I made this activation of K-2740 on January 4, 2021.

Gear:

On the Air

This was my first activation of 2021!

Since I have Internet access at Lake Norman, I can check out the  POTA spots page on my phone or tablet and self-spot as well as see spots of other activators.

When I have Internet coverage like this–and I’m not pressed for time–I try to work as many Park-To-Park contacts as I can before I start calling CQ POTA myself.

As I mention in the video, one of my 2021 goals is to obtain a valid activation of each park with only five watts or less. This means that each time I start an activation, at least my first ten stations logged will be with a max of five watts of power. I would actually make the goal for all of my 2021 activations to be 100% QRP, but I evaluate gear regularly and part of that process is to push wattage limits so it’s simply not realistic.

This isn’t actually a crazy goal because a number of my transceivers max out at five watts or less, and I know it won’t be an impediment as I activate parks in CW.

In SSB, though? It makes it a bit more challenging, but certainly not impossible and I’m always up for a challenge!

So I started this activation by trying to work a few Park-To-Park contacts but first cranked the RGO One power down to five watts. Trying to be heard over other hunters in SSB was difficult, but CW was much easier.

After working a few P2P stations, I started calling CQ on the 40 meter band in SSB. I worked about four stations, then switched to CW and worked seven more on 40 meters.

Since I’d snagged my ten contacts for a valid activation, I moved up to 20 meters phone (SSB), cranked up the power to over 40 watts, and started calling CQ POTA and racked up an additional 11 contacts for a total of 26 contacts logged at this activation.

Here’s my QSOmap:

Click to enlarge

Note that I left the callsign labels off the map this time to make it a little easier to see the geo location of the stations I worked.

Real-Time Video

I made a video of the entire activation and posted it on my YouTube channel. As with my other videos, there are no edits and no ads. It’s all real-time and includes my many goof-ups! But hey–mistakes are all a part of a real activation!

Again, if you’d like to know more about the Mission RGO One, you might check out my review on the SWLing Post.

Feel free to comment with your thoughts or questions and thank you for reading QRPer.com!

Parks On The Air Pro Tip: Finding more park sites to activate

Many thanks to QRPer, Curt, who recently left the following comment on a recent post and noted:

I too was a NPOTA activator. My first HF contact ever was on 9/10/2016 and then I threw myself to the wolves so to speak activating my first park on 11/12/2016.

When NPOTA was over I went into withdrawal and I thought POTA was going to fill that void but here in Western PA there’s not much to pick from. We have a lot of parks but none that fall into the park list. One of the local parks I’ve been told not to bother because it’s in the middle of the city and the local police don’t seem to like any activations there for whatever reason.[…]

You’re right, Curt, and I totally understand.  Many local, county, and private parks are not included in the Parks On The Air (POTA) program. POTA tends to include parks that are on a state, provincial, or national level. Not always in every country, but it’s the general rule of thumb.

I don’t know the POTA scene in western PA well because I’ve never thoroughly researched it. With that said, I’m willing to bet there are more accessible parks in your neck of the woods than you might realize at first blush.

The only entry to this state park is very easy to find and marked well along the highway.

Historic sites and parks–both state and national ones–tend to have very defined borders with conspicuous entry points. They’re, in many senses, “low-hanging fruit” for POTA because they’re super easy to find and usually have picnic and camping areas.

You simply locate one on the POTA map, tell your smart phone to take you there, arrive, find a picnic table or parking area near trees, setup,…et voilá! You’re on the air and activating. Typically, a very straight-forward process.

I would suggest new POTA operators start with these types of parks to give their field radio kit a good shake-out.

Digging deeper…

There are so many other POTA entities out there, though, and the POTA map (while an excellent resource) can’t represent them well.

I should add here, that POTA is an international radio activity and I do not know the various types of parks and POTA entities in other countries. There’s a lot of variability.

Here in the States, aside from parks and historic sites, we have other POTA entities like:

  • Game Lands
  • Rivers
  • Trails
  • Wildlife Management Areas & Refuges
  • Recreation areas
  • Conservation areas
  • and Forests

These types of public lands can be vast with many possible parking areas and entry points. Some have multiple, disconnected tracts of land and the POTA map only typically represents them as one clickable geo point because it would be incredibly difficult to represent them otherwise.

It requires the POTA activator to do a little planning and research.

One example

Here in North Carolina, we have a lot of state game lands and they’re some of my favorite spots to activate.

Some game lands may only be a couple hundred acres large, others may encompass hundreds of thousands of acres.

Case in Point: Nantahala Game Land is only one entity on the POTA map, but it is located in no less than six western North Carolina counties–dominating the majority of them, in fact.

Check out this map of Nantahala Game Land from the NC WRC website below:

Click to enlarge.

There are probably hundreds of spots where you can find public access to activate this particular POTA park.

Trails are another POTA entity that should not be overlooked. They often snake through areas and have multiple trailheads where you can easily find parking and ample room to activate.

Here’s how I find the more elusive POTA parks…

Being a bit of a map geek, I actually love this process!

1. Take a close look at the POTA list

The POTA map is amazing, but as I said, it simply can’t display the size and geographic shape of each park.

Start with the complete list of POTA entities in your location.

An example from Pennsylvania.

Click here to display a list of all POTA entities at your location.

If you have lived the majority of your life where you are now, you’ll likely recognize some of the names associated with the park entities in this list.

Regardless, comb through this long list carefully. Do an internet search on the park names and you’ll quickly discover roughly where the land is located

2. Make a spreadsheet of potential parks

A sample of my park spreadsheet from early last year.

On this sheet make column headers for at least:

  • The park name
  • The POTA designator for that park (K-6937, for example)
  • The travel time to the park
  • The geo coordinates of potential activation spots

I also added

  • How “rare” the park might be (how many times it’s been activated)
  • How easy access to the park might be
  • If it could potentially be a two-fer (meaning two POTA entities overlapping)

3.) Find an activation site with Google Maps satellite view

Now that you’re developing an activation plan (via your spreadsheet), and you’ve located all of the nearby parks, game lands, wildlife management areas, trails, refuges, etc. it’s time to research each entity and find activation sites.

Most states (and provinces, counties, regions) have sites that will help you find access points to public lands. Each state is different–some (like North Carolina) have amazing online resources, others may not.

If you can’t get the details you need online, don’t hesitate to call those public departments in charge of the lands and ask them about access points. They’re experts on the subject and often your taxes pay their salary. 🙂

To find game land activation sites in North Carolina, I first go to the WRC Map and click on a site. The WRC site will offer up maps and even indicate obvious parking and camping locations.

I then find public roads in/around the game lands and do a Google Map search (you can pick your favorite mapping tool).

I compare the WRC map with the Google map (side by side) and search for parking spots using a satellite view.

Here’s how to find the satellite view on Google Maps using a sample POTA site:

Find the park area based on public roads, then click on satellite view:

Now you’ll be able to see a bird’s eye view of the land:

When you zoom in, you often can identify a nice parking spot:

Using the satellite view I can zoom in and see that there’s a parking space with trees surrounding it. Score!

That’s how I do it.

Important note: of course, it’s incredibly important that you compare public land boundaries with your activation site and make sure you will, indeed, be on that POTA entity when you activate. While there are no POTA police–nor will there ever be–I personally want to be 100% sure I’m activating entirely within the boundaries of my chosen park. Google Maps can’t be trusted to indicate unit boundaries–one needs to compare the state or federal maps of the unit to be sure.

Next, I take those geo coordinates (map links) and embed them in my POTA spreadsheet.

Later on, when I decide to activate that park, all of my research is done! I simply grab my gear and go.

That’s it!

If you’re like me, you may be surprised how many potential activation sites there are in your region when you take a closer look at public land boundaries and access points.

I found at least five POTA sites within a 90 minute drive of my home that were ATNOs (All-Time New Ones) that no one had activated.

How do you research parks–?

I probably should not call this a “Pro Tip” because I’m not a professional!

There are many different ways you can find great POTA sites within your region. Please feel free to share your POTA procedure with us in the comments!

POTA Field Report: Pairing the Elecraft KX3 with the AX1 antenna and seeking distant stations

Although I’m a huge fan of wire antennas in the field, since I started using CW during my Parks On The Air (POTA) activations, I’ve really enjoyed experimenting with compromised portable antennas.

Typically, there’s a trade off with field antennas:

High-performance antennas tend to take more time to install. Some of my highest performance antennas are dipoles, doublets, delta loops, and end fed wire antennas. All of them require support from a tree if I want maximum height off the ground. Some (like the dipole) require multiple supports. While I actually enjoy installing wire antennas in trees, it typically takes me at least 10 minutes to install a wire antenna if it only needs one support and one counterpoise.

Compromised or low-profile antennas may lack performance and efficiency, but are often much quicker and easier to deploy.

In my opinion, field operators should keep both types of antennas in their arsenal because sometimes the site itself will dictate which antenna they use. I’ve activated many sites where wire antennas simply aren’t an option.

That was not the case last Tuesday, however.

Tuttle Educational State Forest (K-4861)

On Tuesday, December 29, 2020, I stopped by Tuttle Educational State Forest (K-4861)–one of my favorite local state parks–for a quick, impromptu activation.

I had no less than four antennas in my car that day and Tuttle is the type of site where I can install pretty much anything: they’ve a spacious picnic area with large tables, tall trees, and parking is close by. Tuttle is the perfect place to deploy not only a large wire antenna, but a large radio if you wish since you don’t have to lug it far from the car.

But en route to Tuttle I decided to take a completely different approach. One of the four antennas I had in the car that day was the Elecraft AX1 antenna.

Without a doubt, the AX1 is the most portable antenna I own. It’s so compact, I can carry it in my pocket if I wish.

When I first purchased the AX1, I was very skeptical and assumed it would only work when “the stars aligned”–days with better-than-average propagation and lots of POTA hunters/chasers looking for me.

The first time I used the AX1 in the field, it impressed me (understatement alert).

The second time, same thing.

In all of my AX1 activations, however, I had only operated on the 40 meter band where the antenna’s footprint looked more like a NVIS antenna than a vertical. Meaning, most of my contacts were in neighboring states like Tennessee, South Carolina, Virginia, and Georgia (typically, those states are in my 40 meter skip zone).

The reason I hadn’t tried 20 or 17 meters with the AX1 is because I would start an activation on the 40 meter band and accumulate enough contacts to achieve a valid activation. Since I’m often pressed for time, I simply didn’t bother configuring the antenna for the higher bands.

Time for that to change!

The question I wanted answered at Tuttle: could the AX1 antenna work “DX” stations? By DX, I mean POTA DX, so distant states and provinces primarily–not necessarily other countries.

Gear:

On the air

I paired the Elecraft KX3 with the AX1 at Tuttle. This was the first time I’d ever tried this particular transceiver/antenna combo.

After setting up, I started on the 20 meter band and called CQ for a few minutes.

The first two stations I worked were in Texas (KF9RX and K5RX).

The third station (W6LEN) was in California.

California!?!

Honestly, it was/is hard for me to fathom how in the world 10 watts into a tabletop telescoping whip antenna could work a station exactly 2,083 miles (3,352 km)–and three time zones away–from my picnic table. I’m sure W6LEN has a great antenna on the other end, but I bet he would be surprised to learn that my 10 watt signal was being radiated by such a wee antenna.

 

 

I then worked stations in Florida (K2WO), Minnesota (N0UR), and New Hampshire (W2NR) and decided to move to 17 meters.

On 17 meters I worked W2NR in New Hampshire once again.

I should note here that each time you work a station on a different band or with a different mode, it counts as a separate contact in POTA. In other words, my contacts with W2NR on 20 meters and 17 meters counts as two logged contacts toward my overall QSO count. I’m very appreciative of hunters who go out of their way to work me on different bands and modes: those extra contacts help me achieve a valid activation in short order.

I then moved to 40 meters and worked stations from Tennessee, West Virginia, Ohio, and Michigan.

Video

Here’s a video of the entire activation. It’s a long video as it starts at set-up and continues until my last contact. There are no edits in this video–it’s a real-time, real-life deal and contains all of my bloopers:

Note that in the video I had the KX3’s volume maxed out so that it could be picked up by my iPhone microphone. The KX3’s wee internal speaker was vibrating the chassis ever so slightly. On the 40 meter band, it resonated enough that it moved the encoder slightly. Next time, I’ll plan to bring a portable external speaker (if you have any suggestions of good ones, let me know).

And here’s a QSOmap of the activation:

Click to enlarge.

Bioenno 3aH LiFePo battery

I should also add that I’m very pleased with my new Bioenno 3aH LiFePo 12V battery. You can see it in the photo above–it’s slim, lightweight, and very compact.

I purchased it during Bioenno’s Black Friday sale. I was a little concerned it might not have enough capacity to carry me through multiple activations–my other LiFePo batteries re 4.5 and 15 aH–but that does not seem to be the case at all! Not only did it provide nearly an hour of intense use on this activation, but it also powered three activations the previous day–all four activations on one charge! Brilliant!

Radio magic

As I mentioned in a previous post, this was one of those activations that reminded me of the magic of low-power radio. It was incredibly fun!

For all of those phone/SSB operators out there, I will eventually see how successful I can be doing a phone-only activation with the AX1 antenna. I’ll plan to make a video of it as well. I’ll need to plan this for a day when I have more time to spend on the air and at a site where I know I’ll have internet access to spot myself to the POTA network.  SSB isn’t quite as effective as CW when operating with a setup this modest. Still–it can be done! It just requires a little more patience. Please let me know if this sort of thing would interest you.

Until then, Happy New Year and 73s to everyone!

Cheers,

Thomas (K4SWL)

Upgrading my Yaesu FT-817 with G7UHN’s rev2 Buddy board

This article was originally published on the  SWLing Post.
Last August, SWLing Post contributor, Andy (G7UHN), shared his homebrew project with us: a genius companion control display for the venerable Yaesu FT-817 general coverage QRP transceiver.

Andy’s article caused me (yes, I blame him) to wax nostalgic about the popular FT-817 transceiver. You see, I owned one of the first production models of the FT-817 in 2001 when I lived in the UK.

At the time, there was nothing like it on the market: a very portable and efficient HF, VHF, UHF, multi-mode general coverage QRP transceiver…all for $670 US.

In 2001? Yeah, Yaesu knocked it out of the ballpark!

In fact, they knocked it out of the ballpark so hard, the radio is still in production two decades later and in demand under the model FT-818.

I sold my FT-817 in 2008 to raise funds for the purchase of an Elecraft KX1, if memory serves. My reasoning? The one thing I disliked about my FT-817 was its tiny front-facing display. When combined with the embedded menus and lack of controls, it could get frustrating at home and in the field.

I mentioned in a previous post that I purchased a used FT-817ND from my buddy, Don, in October, 2020. I do blame Andy for this purchase. Indeed, I hereby declare him an FT-817 enabler!

FT-817 Buddy board

When I told Andy about my ‘817ND purchase, he asked if I’d like to help him test the FT-817 Buddy board versions. How could I refuse?

Andy sent me a prototype of his Version 2 Buddy board which arrived in late November. I had to source out a few bits (an Arduino board, Nokia display, and multi-conductor CAT cable). Andy kindly pre-populated all of the SMD components so I only needed to solder the Arduino board and configure/solder the cable. I did take a lot of care preparing and soldering the cable, making sure there was no unintentional short between the voltage and ground conductors.

Overall, I found the construction and programming pretty straight-forward. It helped that Andy did a remote session with me during the programming process (thanks, OM!). Andy is doing an amazing job with the documentation.

I do love how the board makes it easier to read the frequency and have direct access to important functions without digging through embedded menus. While there’s nothing stopping you from changing the program to suit you, Andy’s done a brilliant job with this since he’s an experienced FT-817 user.

The Nokia display is very well backlit, high contrast, and easy very to read.

“Resistance is futile”

I mentioned on Twitter that, with the backlight on, the FT-817 Buddy makes my ‘817ND look like it was recently assimilated by The Borg.

Don’t tell any Star Trek captains, but I’m good with that.

Andy has a rev3 board in the works and it sports something that will be a game-changer for me in the field: K1EL’s keyer chip!

For more information about the FT-817 Buddy, check out Andy’s website.

Of course, we’ll keep you updated here as well. Many thanks to Andy for taking this project to the next level. No doubt a lot of FT-817 users will benefit from this brilliant project!