Tag Archives: Kites

Part 2 – Kite Operation: VO1DR Goes QRP Portable in Central Newfoundland via Float Plane

Many thanks to Scott (VO1DR) who shares the following guest post:

Portable/Kite QRP Operation in Central Newfoundland Wilderness by Float Plane: Part 2 – Radio Gear and Portable/Kite Operation

by Scott Schillereff, VO1DR


This is Part 2 of a two-part story of a portable QRP adventure with a kite antenna at Mount Sylvester in the Bay du Nord Wilderness Area in central Newfoundland by float plane.

Part 1 described the setting, history, geology, access, and outdoor/survival gear.

Part 2 here describes radio stuff and some dramas with kite antenna operation.  I hope you enjoy reading this.

Radio Gear

Given that our hike up Mount Sylvester would be relatively easy (about half an hour up a gentle bedrock slope), I chose to bring a fair bit of radio gear with lots of backups.

Figure 1 – My gear in porch.  L to R: survival bag and day pack (described in Part 1), haversack with radio gear and kite (orange bag), and plastic ammo box (for IC705).  Our Havanese dog Chico was overseeing packing.
Figure 2 – Haversack (originally a free gift to mother-in-law; now pressed into radio service).
Figure 3 – Contents of Radio bag
Figure 4 – End-fed wire antennas (HB9EAJ designs; Standard (on winder), and Compact (coiled)).  The Standard has a 56:1 coupler (white barrel) and in-line latching band switch (black tape).  Zip bag is a GODSPC (good ol’ Dollar Store pencil case).  Wire is AWG24 speaker wire.
Figure 5 – 5.8 m (19 ft) telescoping fibreglass pole (repurposed from a discarded bird-scaring mast found by a nearby school); collapsed, it doubles as my 1.4 m (4. 5 ft) walking stick.  Yellow 1.5 m (5 ft) rope is for tying off to a support (e.g., picnic table) and forms a grip for walking.
Figure 6 – Detail at top of pole.  Top fitting is from a broken fishing rod.  I added a homemade pulley and split sheave (easy to insert and remove antenna wire).
Figure 7 – Detail of bottom of pole.  Black ABS plumbing fitting (plug) fits snugly over base of pole and is tack-glued with cyano-acrylate glue (can be be forced apart if needed).  Hiking/achor tip is a filed down 6 mm (1/4 in) steel bolt threaded and glued into plug from inside.
Figure 8 – DIY guy rope system for pole.  Stakes are 18 cm/7 in aluminum gutter nails (excellent tent pegs).  Red ring is made from the top of a pill bottle that snugly fits over top of pole.  Stakes are driven equi-distantly around the pole and tightened with 2.5 mm nylon cordage for rigid support.  Tip: I tied the guy cords with fixed knots (Constrictor Knot) at the stake heads and moved the tensioning knots up near the ring – less bending over and I can reach them all!
Figure 9 – Back-up base-loaded whip antenna (DIY, modified from QRP Guys DS-1). I call it the “MiracleWhip” it works so well.  Too windy to deploy on this trip.  It all fits in a GODSPC.
Figure 10 – Nylon ground tarp 2 m x 2 m (6.5 x 6.5 ft).  DIY tarp/poncho based on a Russian plash palatka (design dates back to the 1700s).  Keeps me dry when sitting on damp ground; many survival uses too.
Figure 11 – Rite In The Rain notebook  #363.  Waterproof, lays flat, pencil fits in spirals.
Figure 12 – Plastic ammo box for IC705 and my ATU.  For this trip, I just looped a nylon strap through handle for carrying.  I’ve since made a sling attached to both the hinge end and clasp end (more stable).
Figure 13 – Ammo box open. IC-705 (in WindCamp exo-skeleton) is in blue bag snug in bottom.  ICOM mic on right.  ZM-4 style ATU in red bag (a cut-down GODSPC).
Figure 14 – Detail of ATU.  I built this modified from QRP Project ZM-4 ATU design to fit in an Altoids tin.  I have submitted an article on this build to Sprat journal of G-QRP club.

The Kite

A common kite style used for antennas is a sled kite.  Rigid sled designs maintain their flying shape with struts, while soft sled designs use a rigid air-filled tube (tapering Venturi tube) to maintain flying shape. Continue reading Part 2 – Kite Operation: VO1DR Goes QRP Portable in Central Newfoundland via Float Plane