Tag Archives: Ham Radio

The ALT-512: A new general coverage QRP transceiver

Note: The following has been cross-posted from our other radio site, the SWLing Post.

There’s a new QRP transceiver on the market: the twelve band ALT-512 by Aerial-51.

At first glance, you’ll see a similarity between the ALT-512 and the LnR Precision LD-11/Aerial-51 SKY-SDR. The LD-11 and SKY-SDR, are very similar, save the LD-11 is marketed to North America (via LnR) and the SKY-SDR to Europe. The SKY-SDR had several iterative upgrades, most importantly the dual-threaded software used in the firmware, which cut CPU latency in half. Both the LD-11, SKY-SDR and now the ALT-512 are made in Europe.

Click here to read my review of the LnR Precision LD-11.

ALT-512 Waterfall display (Photo: DJ0IP)


According to Aerial-51, the new ALT-512 is built on the LD-11/SKY-SDR platform, has the same chassis design but has many improvements over the SKY-SDR:

  • 4m Band
  • 4.5 in. Color Display
  • Improved receiver pre-amplifier
  • 2 transistors in the transmitter PA (was 1)
  • Waterfall in addition to the Pan-Adapter Bandscope
  • 4 additional front-panel buttons
  • User friendly front-panel adjustment of often used parameters (formerly embedded within the software menu)
  • FULL TS-2000 command set implementation
  • Built-in Sound Card; Digi Modes run using only one USB-2 cable connected to the PC. No additional hardware required.

If the ALT-512 performs as well as or better than its predecessor, it’ll certainly be a great little QRP radio and an excellent general coverage receiver for HF broadcast listening.

Pricing has not yet been posted, but Aerial-51 plans to make this transceiver available in the next few weeks.

Click here to check out the ALT-512 on the Aerial-51 website.

Robert talks uBITX and navigating the world of used radio gear

Robert’s uBITX QRP transceiver kit with fire red chassis.

Many thanks to my buddyRobert Gulley (AK3Q), who shares the following announcement from his blog All Things Radio:

I have posted two new articles in the Reviews and How-Tos section. These were both previously published in The Spectrum Monitor magazine earlier this year.

The first article deals with buying used and new equipment, while the other article is a review of the uBITX QRP transceiver. Thanks go to Ken Reitz for graciously allowing these to be posted after their initial publication!

And thank you, Robert!

Readers, I highly recommend both of these articles.  In his used equipment guide, Robert makes practical suggestions for navigating the world of pre-owned radio gear and shares some important tips. His uBITX QRP Transceiver article is essential reading for anyone who has considered building this incredibly affordable kit.

Scott’s Elecraft KX3 Go-Box

[Note: this article was originally posted on my shortwave radio blog, The SWLing Post.]

Many thanks to Scott (AK5SD) who shares the following photos and bill of materials for his custom Elecraft KX3 go-box:


IMG_0531 IMG_0534

IMG_0532 IMG_0535 IMG_0537 IMG_0536

Bill of materials

The panel was custom laser cut by Front Panel Express. I have the CAD
file and I’m willing to share it with anyone who wants to reproduce my effort.

Amazon.com
Case B&W Type 1000 Outdoor Case with SI Foam
You won’t use the foam, so you can buy the version without it if you can find it cheaper.

Battery Anker Astro Pro2 20000mAh Multi-Voltage (5V 12V 16V 19V)
Portable Charger External Battery Power Bank
Avoid look alike batteries and the next generation model from Anker. The newer Anker
battery is only capable of delivering 1.5A from the 12V supply. Two look alike batteries
I tried did not have the auto-off feature that the Anker does.

Vetco.net
ACC2 and I/Q Jacks 2 x 2.5mm Stereo Jack Panel Mount (PH-666J-B)
Phone, Key, and ACC1 3 x 3.5mm Stereo Jack Panel Mount (High Quality) (PH-504KB)
Mic Jack 1 x 3.5mm 4 Conductor Jack Panel Mount (PH-70-088B)
12V IN and CHG IN 2 x 2.1mm DC Power Panel Mount Jack (PH-2112)
12V OUT 1 x 2.5mm DC Power Panel Mount Jack (PH-2512)

You also need plugs and wire for interconnects. I bought some 2.5mm (CES-11-5502)
and 3.5mm (PH-44-468 for stereo, PH-44-470 for 4-conductor) audio cables with right
angle plugs and just cut them to use for the signal lines going to the KX3. I did the same
thing for the 2.5mm (PH-TC250) and 2.1mm (PH-TC210) power cables. A couple of
caveats are in order. The Phone, Key, and ACC1 interconnects require low profile
right angle connectors. The cables I listed above won’t work. Vetco part number
VUPN10338 will work. The power cables I’ve listed above use 24 gauge wire. This
is a little light, but the runs are small so I think it is OK. You can use higher gauge
cables if you can find a source.

USBfirewire.com
USB OUT USB 2.0 Right Angle Extension Cable (RR-AAR04P-20G)

Digikey.com
L Brackets 8 x Bracket Rt Ang Mount 4-40 Steel (612K-ND)
These L brackets are used to mount the KX3 to the panel and the panel to the case.
For mounting the KX3, I use a little piece of stick on felt on the bracket to protect the
KX3’s cabinet from damage. Replace the KX3’s screws with #4-40 Thread Size, 1/4”
Length Steel Pan Head Machine Screw, Black Oxide Finish (see below). For the panel
mounting, use #6-32 Thread Size, 3/16” Length self tapping sheet metal screw. You
may need to cut the tip off in order to not puncture the outside of the case.

RG316 BNC Male Angle to BNC Female SM Bulkhead Coaxial RF Pigtail Cable (6”)
This is not the original interconnect I used for connecting the KX3’s antenna output to
the panel. However, I think it is a better option for new designs. The caveat is that you
will need to verify the hole in the panel matches the bulkhead connector on this cable.
There will be a little loop in the cable when you are done, but that is fine.

Micrfasteners.com
Screws for Sound Card 2 x FMSP2510 – M 2.5 x .45 x 10mm
Screws for KX3 Bracket Mount 4 x MSPPK0404 – 4-40 x 1/4
Screws for Countersunk Panel Holes 8 x FMPPK0403 – 4-40 x 3/16
Screws for USB Connector *** 2 x FMPPK0406 – 4-40 x 3/8

I’m pretty sure these are the right length for the USB connector. I am doing it from memory.

Amazon.com or eBay.com
Soundmatters foxL DASH A Wireless Bluetooth Soundbar (OPTIONAL)

Sonoma Wire Works GJ2USB GuitarJack 2 USB Portable Audio Interface (OPTIONAL)
(Make sure you get the USB model, not the 30-pin model.)

This is optional if you want a built-in sound card interface for a waterfall display using iSDR. Make sure to eliminate the holes in the upper left corner of the panel if you are not installing. You will also need 2.5mm x 10mm screws to mount this to the bottom of the panel (see below).

bhi Compact In-Line Noise Eliminating Module (OPTIONAL)

In my opinion, the KX3’s noise reduction is totally ineffective for SSB communications. This external noise reducing DSP is one solution, albeit an expensive one, to that problem. It is only for SSB, not CW or digital modes. It is also available from GAP Antenna Products.

IMG_0530


Scott: you have done a beautiful job here and have spared no expense to make a wonderfully-engineered and rugged go-box. No doubt, you’re ready to take your KX3 to the field and enjoy world-class performance on a moment’s notice. 

Though I’ve never used them personally, I’ve noticed others who have taken advantage of the Front Panel Express engraving service–certainly makes for a polished and professional front panel.

Again, many thanks for not only sharing your photos, but also your bill of materials which will make it much easier for others to draw inspiration from your design!

AK5SD_QSL_Card

Speaking of designs, when I looked up Scott on QRZ.com, I noticed that he also sports a QSL card (above) designed by my good friend, Jeff Murray (K1NSS). Obviously, Scott is a man with good taste!

Happy Thanksgiving: “Mike” on Ham Radio

Many thanks to Ray Novak for sharing this video from the ABC series Last Man Standing:

Happy Thanksgiving to all (even if you’re not State side)! And, please, savor your ham.
-K4SWL

An External Battery for the KX1

NOTE: I am embarrassed to admit that I made a significant error in my original measurement methodology and the numbers originally listed below were inaccurate. I’ve redone all the measurements and the text and tables below reflect the corrected measurements. *

Your host, K4SWL, asked me to share my experiences in trying to find a small, lightweight, battery pack for use with my field-portable QRP station. While I’m looking for a battery pack specifically for my Elecraft KX1, what I’m learning should be useful for users of any low-current QRP transceiver.

original 10-cell battery-holder -- click to enlargeCurrently, I’m experimenting with a pair of ten-cell AA battery-holders, one of unknown provenance (photo) and a new, more rugged one from Batteries America (p/n 10AAT, photo). When filled with ten AA NiMH cells, the resulting battery-packs provide about 14v at full-charge. At the 2012 Flight of the Bumblebees, my KX1 generated an indicated 2.6w on 20m and 4w on 40m while being powered by one of these packs; the nearly four hours of low-stress operating during this event did not discharge this pack of 2,000mAh cells very deeply. The use of two AA dummy-cells will also allow the use of eight lithium primary or alkaline cells in an emergency.

new 10-cell battery-holder -- click to enlargeI became concerned about using this style of spring-contact battery-holder when I found an article (link) by Phil Salas, AD5X, in which he reported that this sort of battery-holder is likely to display significant voltage drop under load.

I tested my original battery-holder with ten 2,000mAh NiMH cells and my KX1 transmitting into a dummy load. In addition to measuring whole-pack voltage-drop, I measured the voltage-drop of each of the individual 2,000mAh cells as I transmitted into the dummy load on 20m.

Original Battery-Holder / 2,000mAh cells
Band ΔVpack ΣΔVindiv.
20m 0.76v 0.52v
30m 0.79v
40m 0.75v
80m 0.70v

The sum of these individual drops was 0.52v, so I’m losing 0.24v in the spring-contacts and/or battery-holder’s “transistor battery” output connector.

After replacing the original nylon connector with a pair of Anderson Powerpoles, I tested the same 2,000mAh NiMH cells in the new, more rugged battery-holder, this time only on 20m:

New Battery-Holder / 2,000mAh cells
Band ΔVpack ΣΔVindiv.
20m 0.73v 0.53v

I’m losing about 0.20v in the battery-holder’s spring-terminals, slightly less than with the older battery-holder.

The 0.20v ~ 0.24v drop from the spring-terminals doesn’t seem excessive to me and the difference in these measurements between the two battery-holders is probably not significant. I am more concerned by the 0.53v ~ 0.54v voltage-drop I measured in the individual cells. It is likely that these older 2,000mAh cells, which have been cycled many times, are exhibiting greater voltage-drop than new cells would. To test this theory, I purchased new 2,100mAh cells to measure.

I measured the new cells as above, again on 20m into a dummy load, and found that with each of the battery-holders, the sum of the individual cell voltage-drops was 0.22v, so my speculation appears to have been correct–the new cells do have lower voltage drop under load than the old cells do.

Orignal Battery-Holder, 2,100mAh cells
Band ΔVpack ΣΔVindiv.
20m 0.48v 0.22v
New Battery-Holder, 2,100mAh cells
Band ΔVpack ΣΔVindiv.
20m 0.47v 0.22v

The new 2,100mAh NiMH cells are marketed by Polaroid and cost $6 per four-pack at Big Lots; the least expensive AA NiMH cells available at Batteries America, 2,500mAh Sanyo cells, cost $3 each at the time of this experiment. I don’t know if the Polaroid cells will last for as many cycles as the probably-higher-quality Sanyo cells would but trying the significantly less expensive Polaroid cells seemed like a a good gamble.

As indicated above, the new battery-holder (Battery American p/n 10AAT) is more rugged than my original battery-holder; it holds the AA cells more securely and and doesn’t use a “transistor battery” connector to connect to the load. I replaced the original nylon connector with a pair of Anderson Powerpoles. This battery-holder will be my preferred battery-holder for field operations with the KX1.

In his article (link), Phil Salas, AD5X, recommends foregoing battery-holders in favor of soldered/welded battery packs but I will continue to experiment with battery-holders. I prefer to charge my NiMH cells individually, using an intelligent MAHA charger, rather than charging an entire pack. In addition, my KX1 draws significantly less current on transmit than Phil’s IC-703 does so the the IxR losses I’ll experience will be less significant than that which Phil experienced.

Visit my website to learn more about my QRP operations or to learn more about my KX1 Mini Travel Kit.

* What had I done wrong? I discovered when testing my new battery-holder that the previous measurements of the old and new NiMH cells in the original battery-holder had been made with the KX1 transmitting into a 50Ω dummy load with the KX1 autotuner configured in tune mode instead of in bypass mode; because the KXAT1 autotuner doesn’t sense a mismatch and automatically tune, this meant that transmitter current–and the measured IxR voltage losses–might be also be significantly different than with the KX1 transmitting into a matched load. Comparisons of my original numbers to measurements made later of the new battery-holder wouldn’t be meaningful, so I had to do all the measurements again.

2012 Fort Tuthill QRP Conference July 26-28

(Source: John Stevens, K5JS, via QRP-L)

It’s time once again to join the Arizona ScQRPions at the annual Fort Tuthill QRP Conference in mountains of Flagstaff, Arizona!! Spend the weekend camping with us at a cool 7500′ playing radio and listening to our outstanding speakers present topics on using Microchip micro-controllers, troubleshooting, Software Defined Radios, and
batteries.

Thursday afternoon, July 26, is for the early bird campers to arrive and get set up. Stake out your territory at our reserved campground site. Water is available, but no electricity. There are fire rings / grills for your outdoor cooking and no known fire restrictions inside
the campground at this time. Daytime temperatures should range from mid-70s to low 80s during the day and 50’s at night. Brief (usually) mountain thunderstorms with gusty winds are possible at all times especially during the afternoons.

Campground activities Friday, July 27, could include such things as easy expeditions to local SOTA peaks, operating, trading, renewing old friendships and making new ones, experimenting with antennas, and many other activities. There are plenty of tall Ponderosa pines for those wire antennas. Friday evening is our traditional group supper at one of the local restaurants.

Saturday, July 28, is our day for the technical forums at a nearby facility. We’ll adjourn about 3pm and head back to the campgrounds for our Saturday afternoon picnic. We have a covered ramada that will accomodate 70 easily. Water and electricity is available. You might want to bring a chair and/or table just in case as we don’t have quite the number of picnic tables as we’ve had in the past.

No tickets to buy. Prizes. No tickets to buy. All are welcome.

Bring your own entree for the picnic and we’ll do the rest! Look for many more details on our website at http://www.azscqrpions.com which is being updated. Watch for updates at the website or from @azqrp at Twitter. Send me your cell phone number if you want text updates.

Select Ft Tuthill 2012 in the menu.

Pass the word and we hope to see you there!!

73 john k5js

A QRP Family Holiday on Prince Edward Island, Canada

K4SWL portable VY2!

This year, during our family’s summer holiday, I’m enjoying the hospitality of Prince Edward Island, Canada (hence, the lack of recent posts on QRPer).  This is our family’s second visit to the maritime island, and each time we’ve been  fortunate to stay at the same off-the-grid cabin on the eastern coast, less than twenty meters from the water.

Of course, staying in an off-grid cabin comes with its radio challenges—namely, supplying power—but also comes with one supreme advantage:  no noise from the typical electrical devices that plague most of our homes. What’s more, this cabin sits on 60 acres, so not even a neighbor’s home appliances disturb my RX ears.

On our previous visit, I brought my (then) Yaesu FT-817, a 9aH gel cell, Micro M+ charge controller, 10W Solarex PV panel, some 300 ohm window line, loads of 22 AWG wire and an LDG ATU.  Unfortunately, I found I had very little time for radio, and propagation was dismal. Indeed, it was during that trip that I discovered my FT-817’s finals had blown, so part of the time I was transmitting less than QRPpppp levels.

This year, since I knew the site well, I came better prepared.

My full 2012 setup consists of the following:

  • An Elecraft K2/10
  • An Elecraft KX1 (4 band w/built-in ATU)
  • Elecraft T1 ATU
  • LDG 4:1 Balun
  • One 35 aH gel cell
  • Two 9.5 aH gel cells
  • Two PowerFilm Solar foldable 5 W PV panels
  • My radio toolbox with various connectors, crimpers, cutters, wires, caps, multi-tester, etc.
  • Enough wire and 300 ohm antenna line to make a couple of wire antennas

So…how’s it all working out? Brilliantly!

In the past few years I’ve done a lot of QRP CW—mainly rag-chews with some buddies on the lower bands. I’ve done less QRP SSB phone. When I first arrived at the cabin and began the process of unpacking, I couldn’t find the jumper cable to attach to my Vibroplex single-lever paddle (the paddle being a Dayton 2012 find, by the way). So, I plugged in a microphone and tuned to the phone portion of the 17 meter band.

Talk about radio fun!

I’ve once again re-discovered the joy of operating QRP SSB. It’s challenging to make those DX contacts and to transmit a long call sign (“VY2 portable K4SWL”) across the ether,  but occasionally the propagation gods smile upon you, and you’re able to participate in a good rag-chew or quick DX with a 57 to 59 signal report.

Being 20 meters from the salt water is a bonus I don’t usually enjoy in my US hermitage. Due to its excellent propagation characteristics, despite my lower power set-up, I have easily worked stations from Russia to North Africa, from  the Caribbean to Japan.   I am thoroughly reveling in it, and the process has re-connected me with my ham radio roots.

As Gunter, VA3GA, told me in a recent Canadian rag-chew, “ham radio holidays give you a chance to explore areas of the hobby you don’t normally think to enjoy.”

So true, Gunter. That’s what I love about ham radio in general– the hobby is so broad, you constantly discover and re-discover favorite elements about it.

Flex-Radio introduces the Flex 6000 “game changer” and takes pre-orders at the Hamvention

Today, at the Dayton Hamvention, Flex-Radio Systems will introduce their newest transceiver, the Flex 6000.

I have read through the preliminary specs and it does promise to be a game changer as they implied in earlier teaser ads.

From their product brochure:

Imagine SmartSDR™

With the FLEX-6000 Signature Series radios, FlexRadio brings a wealth of new capabilities to the amateur including direct digital reception, transmission and networking. At the core of all these new capabilities is SmartSDR. SmartSDR organizes all of the signal processing power in the FLEX-6000 Signature Series radios into an advanced reusable framework. First, the RF subsystems in the FLEX-6000 are virtualized as reusable hardware blocks or Signal Capture Units (SCU) with specific capabilities. SmartSDR understands the capabilities of each SCU and how to harness its power.

As data from the SCUs enters the Field Programmable Gate Array (FPGA) at a combined rate of over 7.8Gbps, SmartSDR performs advanced Digital Signal Processing (DSP) on the data, splitting it into individual Panadapters and Slice Receivers. Panadapters are visual displays of the RF spectrum akin to a spectrum analyzer, but with more capabilities for the amateur. Slice Receivers are dynamically allocated full performance receivers that can be directed to the speaker or headphones for listening, or can be streamed as digitized RF to external digital applications.

Panadapters and Slice Receivers can be created and destroyed atwill. What distinguishes SmartSDR is the simplification of theseadvanced concepts into an elegant graphical user interface (GUI) that places you in complete control. Want to create an additional Panadapter to watch for possible 10m band openings?

No problem, simply click to add the Panadapter and SmartSDR directs everything from the advanced signal processing software down to the filters in the SCU to form an optimized receiver. Want to decode all of the CW signals on 40m while working DX on 20m? It’s just a few clicks away. In the future, remote FLEX-6000 Signature Series radios will be equal partners in the SmartSDR ecosystem. Imagine the capabilities: Want to add two remote receivers so you never miss another check-in as Net Control? Just click to add and combine them.

The brochure goes into great detail about the Flex 6000’s features. Its networking abilities, multiple receivers and even frequency lock that is tied into the GPS system will make this SDR stand out from the crowd.

Pricing?

Prices vary from $3999 for the Flex-6500 to $6999 for the Flex-6700. FlexRadio is taking deposits on pre-orders.

As I head out the door for Dayton, stay tuned. We will post other updates and product announcements throughout the day as time permits. In the meantime, click here to download the Flex 6000 series brochure. I will tag any other notable Flex announcement with: FlexRadio

FlexRadio Systems announces a “game changer”

This year at the 2012 Dayton Hamvention, FlexRadio Systems will be joining the line-up of manufacturers introducing new products.  On the FlexRadio front page, they’ve posted the following graphics along with the promise of more to come.  It’s a Dayton teaser, but I will be posting updates with firm facts as they become available. Follow our tag FlexRadio for more…