Category Archives: News

A quick review of the Raddy Multi-function Backpack for HF field transceivers

If you’ve been following QRPer or the SWLing Post for long, you’ve no doubt noticed that I am a certified pack geek.

I tend to buy high-quality packs from companies that both design and manufacture their products in the USA (i.e. Red Oxx, Tom Bihn, Spec Ops Brand, GoRuck, etc.).

In other words? The packs I evaluate are pricey, rugged, and backed by a lifetime warranty. Their quality is uncompromising and at the top of the market.

In addition, I’ve even helped some of these pack manufacturers during product design and development stages, much like I do for radio manufacturers.

Radioddity contacted me a few weeks ago and asked if I’d be interested in testing a backpack they’ve started selling that’s designed with field radio operators in mind. I checked out the info they sent me and the backpack design did, indeed, look bespoke–or custom–for field radio operators. In other words, it wasn’t a laptop bag merely labeled as a radio bag.

But the inner pack geek/snob in me worried that a $45 mass-produced backpack would only lead to disappointment. This is an area where I have tremendously high standards and feel like I get my money’s worth when I happily fork out $200-450 US for a pack.

Still, it’s difficult to find field backpacks that are designed to accommodate radio gear. So I told Radioddity to send me one–which they did for free (meaning, at absolutely no cost to me).

First impressions

The Raddy backpack arrived in two days (basically, everything from Radioddity seems to arrive within two days with tracking and updates).

My first impression was that the Raddy pack was very lightweight, but then again, I tend to buy backpacks made with Ballistic Nylon or 1000 weight Cordura–i.e. materials that are on the heavier side.

Radioddity mentions that this pack is “dust and rainproof” but then go on to say that it’s ” [m]ade of durable water-resistant polyester fabric with metal zippers[…]. [N]ote it’s not totally waterproof.

Thus I believe I would classify this pack as water resistant only. I have had the Raddy pack out in light rain and the water seemed to bead up on it. The zipper openings–while covered–have no proper weather seals, but I see where it would be more than adequate for most rains or showers you would encounter on a day hike. I’m not sure I’d feel comfortable leaving it out in the rain for an extended period of time, though. Part of its ability to keep rain out relies on wearing the pack in an upright position.

The outer polyester fabric feels durable and is pleasant to the touch–it’s not abrasive like some heavier grade materials.

Opening up

First thing I wanted to do was open the main compartment to look inside. But first, I had to find the main zippered compartment.

The main zipper is recessed and protected by a rain flap.

Seriously! Turns out, unlike most backpacks, the main compartment opens from the back or shoulder harness side of the pack rather than the front. They obviously used this design to give the Raddy backpack a better operating surface for the rig inside.

Since the zipper wraps around the outside of the top of the straps, but on the inside of the straps where they attach to the bottom, I feel like the straps are always in the way.

Unzipping the main panel is a little awkward when compared with other packs mainly because the shoulder straps feel like they’re a bit in the way. Still, once I got used to this unconventional design, it became second nature to open.

The zippers are metal, but not YYK–zipper pulls are included.

Main compartment

The main compartment opens to 180 degrees if you wish, but sits comfortably at a right angle so that your radio (which will likely live in the pocket mounted on the interior side of the shoulder harness panel) will rest on a padded surface.

There are Velcro flaps on the hinge points of the interior of the pack that you can detach to have the pack open fully.

Rig Pocket

There is one large padded interior pocket that is the obvious choice for most portable transceivers–especially those with a front faceplate like the IC-703 Plus, Yaesu FT-891, Xiegu G90, etc.

This main pocket has openings at the back corners so that the rig’s power cord, coax line, and accessory cords can all be managed within the pack if you’d actually like to operate from the pack. Admittedly, I’m not certain I’d leave cables and cords attached to the back of my transceiver  during transport, though, as it could cause some stress at the connection points on the back of the radio; stand-offs and/or right angle connectors might help with this, however. The back of the pocket is padded and so is he floor of the backpack, so your rig should be otherwise very protected when the backpack is placed on the ground.

The main internal pocket also has two elastic straps designed to hold the radio in the pocket during transport. I think this is a great idea, however, I’ve found in practice they quite easily slip off all but the largest field radios.  Speaking of which, the largest field radio I own is the Mission RGO One which is ever-so-slightly too large for this pocket. I assume similarily-sized radios like the Ten-Tec Eagle and Elecraft K2 would not fit.

I wish the pack had a frame sheet and the main pocket had at least one compression strap attached to it to hold a radio in more firmly. The pocket is large enough that even my IC-703 Plus slides around inside.

Of course, this main pocket could also hold a laptop or tablet.

The main interior pocket is not well suited for “blocky” transceivers like the Elecraft KX3, Icom IC-705, or Xeigu X5105 for example. Although the pocket can hold most of these, they would simply fall to the bottom and could not benefit from the full dimension.

Battery pocket

The second large padded pocket inside the Raddy backpack is ideal for holding a battery, ATU, or even the “blocky” transceivers mentioned above. I’m calling it a “battery pocket” but in truth it’s obviously designed to also hold transceivers.

This pocket is shorter and has one elastic strap (I’d prefer a compression strap) with a Velcro attachment to hold the contents inside. It’s attached to the front panel of the backpack and when the backpack is zipped closed, this pocket and the rig pocket fit side-by-side.

When I’m carrying the Icom IC-703 Plus in the Rig compartment, I place my 15 Ah LiFePo4 battery in this compartment.

My Elecraft KX3

If I’m carrying the Elecraft KX3, I place it in this battery compartment and my tablet and clipboard in the main pocket.

My Icom IC-705

Like the main rig compartment, there are openings at the bottom corners to allow cable management and routing. I’m not so sure how convenient or practical it would be, however, to operate a radio from this particular internal pocket.

The LDG Z-100 Plus ATU tucked in the battery pocket

Mesh pockets

There are also two internal mesh pockets: one attached to the front panel and the other attached to the large rig compartment pocket.

There pockets would be ideally-suited to hold small cords, a key/paddle, and possibly a small hand mike.

While the top of each pocket has an elastic band, I would not trust these open pockets to hold small items like adapters. They could easily fall out if the backpack were turned upside down.

In addition, if you have heavier items inside, the pocket may sag a bit and look more like an accessories “hammock.”

Exterior front pocket

There’s also one large, flat exterior pocket on the front panel of the Raddy backpack. This pocket might be easy to overlook if the zipper is tucked inside.

The zipper is centered and oriented vertically. When opened, there’s a surprising amount of room inside, and all sides of the pocket are padded.

The opening isn’t large enough to fit my main clipboard (which is fine, because I would store it inside the main compartment), but it is large enough to allow one to store a tablet, notepads, pens, cables, etc. inside.

While the zipper opening has nearly overlapping seams which should help shed water, the vertical orientation of the zipper would potentially allow for heavy rains to penetrate the zipper opening, especially if that front pocket was bulging with gear. This is why conventional packs tend to have a horizontally-oriented front pocket zipper and rain flap over the zipper.

USB access

There’s also an USB access port on the pack that allows for a USB device to be plugged in on the outside and tethered to a device or battery on the inside. I assume this would mainly be used as a battery pack connection.

Interior USB extension cord

This would be handy during travels, but I doubt I would ever use it in the field.

Comfort

I’ve used the Raddy backpack on two short hikes and find it, overall, a very comfortable backpack. I do find the harness a little on the small side, but I have broad shoulders. For those with slightly smaller frames, I think this would work well.

The carry handle is attached across the top of the backpack/shoulder straps.

I also find this a bit odd, because if the pack is fully-loaded and heavy, it puts a lot of strain on the attachment points of the handles and at an angle–meaning, the double stitching isn’t providing the strength it otherwise could if the pack weight was distributed evenly on the top of the backpack body instead of the shoulder harness.

The back of the pack is padded with a mesh that allows for your back to relatively cool as you hike.

Nice touch! A strap you can use to secure the pack around the handle of rolling luggage.

Overall, it’s a very comfortable pack, although I wish the shoulder straps felt more robust and I wish the main handle wasn’t attached to the shoulder straps.

Low profile

One real bonus with the Raddy pack is that it’s low profile, has an “urban” look–in other words, fairly nondescript. This pack does not look like a radio manpack, nor is it tactical in design. If I were to take this through a large city, no one would assume this pack was full of radio gear. It looks like a normal, modern backpack.

There’s real security in a low profile, stealthy design.

In addition, other than the front vertical pocket, this would be an incredibly difficult pack for a pickpocket to steal from..

Quality

The Raddy backpack is designed to hold up to 44lb/20kg of weight. I’m not sure I’d ever need or want exceed 20-30 lbs with it myself.

Radioddity also backs this pack with an 18 month warranty. Exceptional. Radioddity told me they would offer a replacement if any stress points on the pack fail during that warranty period. They also told me they’d handle any warranty replacements within 1 business day. Having worked with Radioddity now for a year, I do believe they’ll stick by this quick response/handling time.

Summary

Is the Raddy Multi-function Backpack for you?

Keeping in mind (again) that I normally review packs at the high end of the market, I’m not familiar with with what would be expected at this $45 price point.

What I can say is that if you’re looking for a compact pack that’s designed to hold and protect radio gear, this is a good option and certainly one of the most affordable I’ve seen on the market.

This pack would best suit the casual park activator that doesn’t need to pack in a lot of extra supplies like field safety gear. It’s designed to only hold a radio, battery, ATU, cables, and a few other accessories–I’ve configured it with a number of radios and found that I can easily pack an entire QRP station inside.

I would use this pack for drive-up parks and summits, and especially for urban outings-. This would be a great pack to wear into a park in or near a city where I wouldn’t want to appear as if I’m a radio operator preparing for field combat scenarios. You could wear this pack into a historic POTA site and politely ask staff if you could activate the park with the low-profile gear you have inside. It would be much less intimidating and conspicuous than a tactical or large hiking pack.

This would also be a great pack if you plan to fly and wish to keep all of your radio gear in a carry-on. Being a compact backpack, the size should easily fit the description of a “personal” carry-on for most airlines (always check before departing, though, as these dimensions will vary by airline). With your gear loaded, it’ll might appear “intentional” and more normal as you go through Airport security as opposed to your gear being simply tossed in a suitcase.

The Raddy pack is not perfect: I would like something more rugged, with a better suspension system and even better weather-proofing around the zippers. I’d also like more rigid padded pockets inside with adjustable straps. I assume all of these things, though, would substantially add to the cost of the pack and might be overkill for most casual operators. While I wouldn’t choose this pack for a 10 mile round-trip hike to a SOTA summit, I would choose it for some casual picnic table operations and, again, for travel.

I love the fact it can be configured so that you can operate directly from the backpack. You could simply open up your pack in the field, connect the antenna, and operate from the open backpack.

I do like Radioddity and find that they stand behind their products. I’m happy to see that they’re offering a competitively-priced radio pack to supplement their product line. I hope other retailers and manufacturers will do the same.

Click here to check out Raddy Multi-function Backpack the at Radioddity ($44.99 US).

PS: It’s my policy that if I receive a free review product from a retailer or manufacture–and they don’t want it returned–I either use it or give it away. Over the years I’ve had the pleasure of giving away review gear to readers and subscribers who I knew would appreciate it. In this case, I know exactly who I’ll be giving this pack to because she’ll give it a thorough workout and is need of a compact radio pack! Maybe I can even convince her to write her own review in a year or so–? We’ll see!

New River State Park: Pairing the Discovery TX-500, Elecraft T1, and PackTenna 9:1 UNUN

Last month, my family went on a camping trip to New River State Park and had an amazing time.

I first discovered New River much earlier in the year when I did a multi-park and summit run.  I really liked the park and, especially, the campground, so I decided to return with the family for some proper outdoor fun and relaxation.

Of course, the benefit of camping at a state park is being able to play radio pretty much anytime while on the park grounds. For a few days, it’s like you’re living in a park activation and can actually set up an antenna and use it over the course of multiple days.

It’s such a big departure from my typically short (45-90 minute) park activations.

When we first arrived at the New River State Park campground, I deployed my PackTenna 9:1 UNUN random wire antenna.

I brought two transceivers with me: the Xeigu X5105 and the Discovery TX-500–I pretty much split my operating the time equally between the two radios.

New River State Park (K-2748)

Although I spent much more time on the air than I normally do, I didn’t make videos of each session. One reason is I wanted to operate with earphones–especially since some of my sessions were later in the evening or early in the morning. I didn’t want to disturb my neighbors at the campground.

That and, especially with the X5105, I wanted to see what it would be like to operate with earphones for extended sessions. Prior to making videos of my activations, I almost exclusively used earphones in the field. I appreciate the sound isolation earphones offer–I also find they help tremendously with weak signal work. When I make videos, however, I don’t want to go through the hassle of recording the line-out audio separately in order to use headphones, so I use an external speaker.

I decided to record my Wednesday, June 23, 2021 evening session with the Discovery TX-500.

Gear:

This session started only a few minutes prior to the end of the UTC day which meant I had to watch the clock very carefully and clear my logs at the beginning of the UTC day (20:00 EDT).

In POTA and other field activities, if your activation straddles the UTC day change, you must keep in mind that any contacts made after 0:00 UTC can only be counted on the next day’s logs. This was not a problem for me because I had logged dozens of stations earlier in the day, but if you ever start an activation close to the UTC day change, you need to make sure you log your 10 contacts for a valid activation prior to 0:00 UTC.

Auto-spotting help

Another thing complicating my sessions at New River State Park was that I chose not to schedule my activation via the POTA website prior to our trip.

If you schedule your activation via the POTA website, anytime the Reverse Beacon Network picks up your CQ calls (in CW), the POTA spots website will scrape that information and auto-spot you.  It’s an amazing convenience for those of us who operate CW.

I chose not to schedule my activation days at New River because I had also planned to operate at another nearby park during my stay and I didn’t want the system to spot me incorrectly. That, and I thought I would have mobile phone coverage to self-spot.

It turned out that–contrary to my mobile phone company’s coverage maps–I had no internet service at the park. None.

In order to get spotted, I relied on my Garmin InReach GPS/satellite device to send short text messages to my buddies Mike (K8RAT) and Eric (WD8RIF). My pre-formatted message would prompt them to check the RBN for my frequency, then spot me to the POTA site manually.

I’m incredibly grateful to have had them helping me in the background. Everyone should have a Mike and Eric as friends!

Video

I made a real-time, real-life, no-edit video of the entire activation. Note that it took a while to get spotted, so the first ten minutes are simply me talking (it’s alright to skip that bit…it won’t hurt my feelings!).

Also, here’s a QSO map of that day’s contacts. Note that this includes stations I logged later in the UTC day (i.e. the following morning/day.

Due to some unexpected conflicts, our camping trip was shorter than we would have liked. We plan to visit New River later this year and spend much more time there. It’s a beautiful park!

Thanks for reading this short field report and here’s hoping you get a chance to play radio in the field soon!

73,

Thomas (K4SWL/M0CYI)

A potentially justifiable impulse purchase…

So I made an impulse purchase last week.

Well, to be honest, it was a purchase I planned to make, but not until much later this year or early next year.

Except I didn’t.

Don’t judge me.

Confession time

Last Sunday, I hopped over to the QTH.com Classifieds to price out a nice 100 watt radio for a friend whose daughter is new to the hobby.

Normally, I use the search functionality at QTH.com and seek out classified ads for particular radio models. Since I wanted to offer him several examples, I decided to simply load all ads for that day and skim through the list.

The very first item that came up on the list was a Yaesu FT-817ND. I opened the ad and looked at the photo.

The owner was selling the radio along with everything that originally accompanied it–the box, antenna, manuals, the whole lot–plus side rails he’d purchased and installed. He described it as “like new” with only five hours of operating time on it. He said he was selling it because, “I just can’t do QRP.”

The price was $350 shipped.

I bought it.

My justification

If you’ve been following this blog for long, you might recall that it was only last year when I purchased an FT-817ND from my buddy Don. I did this after realizing I missed the FT-817 I originally owned shortly after it was introduced to the market in 2001. It didn’t help that I really wanted to build and try the FT-817 Buddy Board by Andy (G7UHN). [Andy: V4 is next on my bench..I promise!]

I honestly think I appreciate the FT-817/818 now even more than I did after it initially hit the market. I’ve been enjoying the FT-817ND in the field and have used it in a number of park and summit activations.

A recent activation at Island Mountain Educational State Forest with the ‘817ND

But that’s not why I purchased this one.

I’ve been wanting to get in on a bit of satellite action as, perhaps, a bit of a stepping stone into QRP EME (I mean, the antennas point upwards, right?) and also my ham daughters are both interested in satellites.

My future QRP full-duplex portable satellite system

 

 

Ages ago, I’d seen and read about hams who’d paired two FT-817s or FT-818s to create a full duplex portable satellite station.

My buddy Eric (WD8RIF) reminded me about this earlier in the year, too, and it stuck in my head because I really liked the idea.

Why? Besides all of the advantages of using a full duplex station, two FT-817s is still a very portable set-up. Hypothetically, I could use it for both satellites and HF during a park activation. Plus, two portable HF radios, right? Right! What’s not to love–?

Seriously: I see the system as quite a value when compared to other full duplex systems including pricier HTs.

As described

I had not done research about FT-817ND pricing before pulling the trigger–indeed, I still haven’t–but I felt $350 shipped was fair. I know I’ll get $350 of fun out of it!

After taking delivery and unboxing it, I expected it to show normal signs of wear, but the seller described it accurately: it was like new. In fact, it still had the protective film on the screen (yes, I pulled it off) and I could tell the microphone had never even been taken from the box. It was flawless and included every single original accessory mostly in the original bags.

I like the side rails, too: They prop up the radio at a perfect viewing angle. I have no idea who made these, but they’re nice.

Speaking of side rails…

Dual Escort?

I’ve been very pleased with the Portable Zero side rails and bail that came with my first Yaesu FT-817ND.

Using a dual FT-817ND system in the field, though, I’ll require either a bag to hold them, or a dual side rail system.

Turns out, Portable Zero makes side rails that hold and space two FT-817/818s perfectly.  I gulped a bit when I saw the price, though.

Still: they obviously make a great product and, for me, it’s an elegant solution. Before I bite the bullet, though, I might investigate homebrewing something or see if there are other options.

In fact, if you’ve seen other solutions–or have owned the Dual Escort yourself–please comment!

Or an affordable carry bag?

W9WSW’s Satellite Gear in this Amazon Basics DSLR bag (Photo swiped from W9WSW’s excellent site)

Another (and perhaps better?) option for portability might be this $28 camera bag from Amazon.com (affiliate link).

The bag would allow me to house both transceivers, a battery, cables, digital recorder and basically everything I’d need to operate full duplex portable in the field.

Another advantage of using the bag would be that I wouldn’t need to remove the side rails I already have on each FT-817ND (assuming the camera bag could accommodate them).  In addition, the bag might make for less dangling cables as I operate.

The fact that numerous satellite gurus like Sean (KX9X) use this same bag is a pretty strong recommendation.

Arrow heading my way

On the advice of Eric, and numerous other portable satellite ops, I ordered an Arrow 146/437-10BP Satellite Antenna.

I assume I’ll use the the BNC connectors on the front of the radio rather than the SO-239 connectors on the back.

SSB filtered!

The FT-817ND I purchased last year came with a 2kHz Inrad SSB filter. I replaced it with a 500 Hz Collins filter I purchased from Steve  (WG0AT)–thanks, Steve!

I opened the new FT-817ND yesterday morning and installed the SSB filter. It sounds great.

If I chased you in POTA or SOTA yesterday, and you logged me, it was with the new FT-817ND running 2.5 watts off of the included NiMH battery pack.

I gave the FT-817ND a thorough work-out and it seems everything functions as it should.

Any other dual FT-817/818 owners out there?

If you have any advice about mounting or packing dual FT-817/818s, I’m all ears.  Also, if you use the FT-817/818 with an Arrow antenna, I’m curious what you use in terms of cable assemblies.

I’m a complete newbie to the world of amateur satellites, so any tips or hints are most welcome.

This weekend, I’m going to the first hamfest I’ve attended in 19 months. Let’s hope I can resist other impulse purchases! For what it’s worth, I’ve zero buyer’s remorse about this purchase!

73 friends,

Thomas (K4SWL)

Portable Power Primer: A beginner’s guide to selecting the best battery option for your field radio kit

The following article originally appeared in the April 2021 issue of The Spectrum Monitor magazine:


I’ll admit it:  I’m a massive fan of field radio.

In 2020, I easily spent a total of 100 hours outdoors with my radios activating a total of 82 sites for the Parks On The Air (POTA) program alone. This doesn’t include hours and hours of SWLing (shortwave radio listening). It’s been great.

Taking radios into the field is so much easier to do today than it was in, say, 1985 or earlier, because we have so many more options for powering our gear in the field. Not only have radios become more efficient in operating off of battery power, but we now have so many affordable and lightweight rechargeable battery choices on the market.

In the following article, let’s take a look at some portable battery power options for your radio gear. By “portable,” I’m talking power options for those of us who load a backpack or carry case and head to the field.

To keep the scope of this article in check, I’m also going to focus only on rechargeable battery options. And rather than get bogged down in the nuances of battery chemistries, we’ll focus on the end result––the pros and cons of each battery type, and how practical they might be for your field application.

In addition, I’ll also limit discussion to batteries that can be purchased of-the-shelf rather than addressing homebrew options. While I love building things, I’m very cautious when dealing with battery charging because if not done correctly, the results can be dangerous. I prefer obtaining products from trusted suppliers who thoroughly engineer and test their equipment.

Let’s take a look at several types of batteries, and speak to their advantages…as well as disadvantages. Then––as we summarize our findings––let’s discuss how to choose the right option for your needs.

Consumer-grade rechargeable batteries

Let’s begin by talking about the lowest-hanging fruit in terms of portable power: everyday rechargeables in the form of 9V, AA, AAA, C, and D cells.

While, admittedly, these batteries are not typically an option because of their limited capacity and energy density, they can still be a very practical power source for portable receivers and even a few QRP transceivers.

Rechargeable battery chemistries have improved with time, thus I no longer purchase nickel-cadmium (Ni-Cd or NiCad) or legacy nickel metal hydride (NiMH or Ni–MH) batteries.

 

These days I almost exclusively purchase low-self-discharge nickel metal hydride (LSD NiMH) batteries, specifically, Panasonic Eneloop batteries (Amazon affiliate link).  Although they’re a pricey option compared with generic NiMH batteries, and might even be overkill for certain applications, I do love the shelf life of Eneloops.

Of course, the benefit here is Eneloops have that low self-discharge. They will maintain charge better at rest (i.e., when not in use) than legacy NiMH or NiCad batteries. From my real-word usage, I’m convinced that Eneloops also demonstrate better longevity over numerous charge/discharge cycles than many others.

All of my portable shortwave receivers that accept AA or AAA batteries are powered by Eneloops exclusively.

And although I’ve never done this myself, it is also possible to power highly-efficient QRP transceivers with Eneloop batteries, so long as you use a multiple battery holder to increase voltage and capacity to match both your rig and your desired amount of operating time.

WD8RIF’s AA battery holder

Keep in mind, though, that most transceivers will require a block of at least ten AA batteries to reach a voltage around 12 VDC. As you might imagine, it can be cumbersome after using your radio in the field to remove all ten of these batteries and charge them in a charger that can only hold, say, four batteries at a time. I personally prefer other options, but this one is certainly a fairly affordable, safe, and accessible option.

Note that in recent years, Panasonic started offering Eneloop Pros: while pricier than standard Eneloop batteries, they offer slightly higher capacity at the expense of overall longevity (roughly 500 versus 2100 total charge/discharge cycles). Since the voltage is the same, I’ve never felt the need to use higher-capacity Eneloop Pros.

Rechargeable Panasonic Eneloop AA batteries (non-Pro version):

  • Price: $2.25 – $4 US per battery, depending on the number in the package
  • Weight: 4 grams/.4 ounces per cell
  • Voltage: 1.2 V each
  • Longevity: Excellent, up to 2100 charge/discharge cycles
  • Ease of recharging: Simple via Eneloop OEM chargers
  • Solar- charging option: Eneloop originally marketed solar chargers, but doesn’t seem to do so presently

Sealed Lead Acid (SLA) Batteries

When I first became a licensed ham radio operator in the late 1990s, sealed lead acid batteries were the primary battery power source used for field radio operation.

At the time, these batteries were one of the best options for portable radio use because they could be purchased in a variety of sizes (based on amp hour capacity), and unlike flooded lead acid batteries, they required no maintenance––and being sealed, did not outgas.

While I’ve owned everything from 3 Ah to 15 Ah SLA batteries, I found the once-ubiquitous 7-8 Ah size to be the “sweet spot” in terms of portability and capacity.

SLA batteries are still among the most accessible high-capacity batteries on the planet. No matter where you travel, it’s likely you’ll be able to hunt them down in any hardware or electronics store. Our small local hardware store has a wide selection of these at their battery kiosk.

What are some of the pros of these batteries? In terms of “bang for buck,” the SLA is still hard to beat. You can purchase a quality 7.2 Ah 12-volt SLA battery for about $18-20 US (affiliate link). This would be more than enough battery to power a typical QRP transceiver for many hours on end. Chargers are also inexpensive––you can purchase a dedicated charger for about $10-15 US. Not bad.

In addition, 12-volt batteries are nearly ideal for amateur radio use since most transceivers are designed to operate with 12-13.8 volts DC +/- a modest margin.

There are some negatives compared with more modern battery chemistries, however. For one, SLA batteries are much heavier than the batteries we’ll discuss in the following sections. After all, they’re (still) made of lead!   In addition, the battery’s longevity will be negatively impacted if you discharge it too deeply.

With that said, if you take care of an SLA battery, it can give you five or more years of service life in the field, yielding an excellent value for the modest investment. If you have an application that requires relatively little capacity from the battery, you might get a very long service life, indeed. In 2011, I built a remote antenna tuner box around an LDG Z11 Pro ATU and a discarded 7Ah 12V SLA battery. At the time, this battery could no longer hold voltage long enough to be reliable in the field, but I knew the Z11 Pro requires very little in the way of power, so I thought I’d try it as a power source anyway. Since the remote ATU box isn’t near an outlet, I charge the SLA battery with a 5-watt solar panel I purchased used at a hamfest with a Micro M+ charge controller. A decade has now passed, and that SLA battery continues to power the Z11 Pro even through seasonal temperature variances of -10F/-23C to 90F/32C. Not bad! Again, keep in mind this application works because the Z11 Pro is so flexible in terms of power requirements––it’ll operate on 6-16 volts DC at 300 mA with a 20 uA standby current.

Clearly, SLA batteries are affordable candidates for back-up power in the shack during occasional power outages.

  • Price: Most affordable option per Ah of the batteries listed here
  • Weight: By far, the heaviest of all the battery options in this article
  • Voltage: Various, but 12VDC is very common
  • Longevity: Very good if properly maintained
  • Ease of recharging: Easy, via simple charge controllers
  • Solar charging option: Multiple types of charge controllers can be used with SLA batteries; among the listed batteries, the easiest and least expensive to charge via solar

Lithium-Ion (Li-ion)

 

Without a doubt, lithium-ion batteries have revolutionized the consumer electronics world.

Why are they so popular?

First of all, their construction allows for a variety of form factors ranging from cylindrical cells to slim packs and pouches so thin they can fit in an ultra-thin mobile phone, eReader, or tablet. They’re the easiest type of battery to accommodate in compact consumer electronics, and indeed, they power most of the consumer electronics we’ve put to use in the last decade.

Secondly, they have a very high energy density, thus pack a lot of capacity for the size and weight. Indeed, if size and weight are your primary requirements, li-ion batteries should be high on your list.

In addition, Li-ion batteries are ubiquitous and affordable because they’re used in so very many applications.

There are negatives, though, with these power sources. First and foremost, they’re very sensitive to over-voltage and over-current events that initiate a thermal runaway. To prove this point, I’ll share some first-hand experience from the early days of large lithium-ion packs…

Li-ion Horror Story

In 2011, I evaluated a lithium-ion battery pack with integrated 5V USB chargers and even a simple one-outlet inverter from one of the big names in portable power systems. At the time, this was a new battery pack and a relatively new technology, at least in terms of the energy density and compact size. After receiving the battery, I charged and discharged it perhaps twice during testing. I had a flight scheduled from North Carolina to California, and decided I’d take it in my carry-on bag to power my laptop in flight. It worked fine on the flight to KSFO. Once there, I recharged it.  On my return flight, it simply didn’t work. I thought perhaps I hadn’t plugged it in properly, or that the hotel outlet I used didn’t work. Upon arrival I emptied my travel pack onto the bed and plugged in the battery pack; it indicated it was taking a charge.

After doing a few projects around the house, I went back up to the bedroom and was greeted with an overpowering smell––almost like the pungent chemical odor of nail polish remover. I looked everywhere for the source of the odd smell.  Finally, I located it:  it seemed to be coming from the battery pack. Upon examination, I could tell the battery had begun to swell. As I lifted it up, I noticed that the bottom portion was essentially in a state of melting. As quickly as I could, I unplugged it and removed it from the room. I then discovered that in the thermal runaway process, it had begun burning through the sheets and mattress of the bed. Shocked, I suddenly realized it could have burned down my home.

Keep in mind, I was completely new to this battery technology, and this was years before thermal runaways made the news and airlines began restricting their transport. To my relief, the company from which I purchased the pack ended up pulling that model off the market, and even reimbursed me for the mattress and bedding. But it was a hard lesson learned.

If I’m being perfectly honest, this lesson had a major impact on my willingness to experiment with Li-ion battery packs.

The problem with the model of pack I had purchased was not the battery chemistry or construction, per se, but the charge controller). The fact is, Li-ion batteries require millivolt accuracy and a number of protections to detect and stop thermal runaway. Battery packs with multiple cells need a battery management system (BMS) that also balances the cells and monitors them closely. Fortunately, most manufacturers of the technology now understand this.

Modern Li-ion cells and chargers are much safer and more stable 

Since then, Li-ion battery chargers have become both orders of magnitude safer and more effective. Still, I only charge these batteries on a surface which, should the battery be tempted to melt down, would be less likely to be damaged or serve as a fire hazard. I also never leave them unattended during charging.

With that said, I don’t think Li-ion batteries are to be feared. Obviously, many of us walk around with one tucked in our pocket all day––in our smartphones! They’re generally considered very safe now.  Of course, I’d only buy the best and would steer away from the lowest-costs units you might find on eBay and Aliexpress, as many of these products are made in places with little oversight or regulation.

Another interesting fact about Li-ion battery packs is that since their voltages are usually available in multiples of approximately 3.6 volts (e.g., 3.6, 7.2, 10.8, 14.4 and 18 volts), they are not always ideally suited for radios that require 13.8V input power. Some packs, however, have circuitry that provides an output voltage closer to your desired amount.

One Lithium-ion battery pack I’ve been using with my Mountain Topper MTR-3B, Elecraft KX2 and KX3 transceivers is a (very affordable) TalentCell rechargeable 3000 mAh Li-ion battery pack that provides both 12V and 5V USB power. It has built-in charging circuitry and is very compact. I purchased mine for about $25 on Amazon.com, and have been very pleased with it so far.

Summits On The Air operators often place priority on smaller-sized and lighter-weight power sources, and thus turn to Li-ion battery packs. Many SOTA friends have invested in high-quality balance charger/dischargers to maximize the life of their batteries, and have been happy with the performance they receive. A quality charger may costs upwards of $60, but is worth the investment if you choose Li-ion batteries as your portable power of choice.

  • Price: From affordable to pricey, depending on capacity and charger investment
  • Weight: The lightest weight portable battery options in this list
  • Voltage: Often in multiples of approximately 3.6 volts: (3.6, 7.2, 10.8, 14.4 and 18VDC)
  • Longevity: Good. Typically around 400-500 charge cycles if properly maintained
  • Ease of recharging: Simple, if a self-contained pack; more complex, if using multiple cells that need balancing
  • Solar charging option: Not advised (yet). There are a number of homebrew Li-ion solar charging projects on the web, but I believe this battery chemistry fares better with a balance charger connected to a stable AC power supply.

Lithium Iron Phosphate (LiFePo4/LFP)

I typically use my 15 Ah LiFePo4 battery pack when powering transceivers like the Mission RGO One that can push 55 watts of output power. I also use this battery to power my Elecraft KXPA100 amplifier on Field Day.

The final type of battery chemistry we’ll cover here is my favorite of the bunch.

There are good reasons why Lithium Iron Phosphate batteries have become one of the choice rechargeable batteries for field radio use.

  • LiFePo batteries are inherently stable and safe
  • They offer a longer cycle life than that of other Li-ion, NiMH, NiCad, or Lead Acid batteries–thousands of charge cycles as opposed to hundreds
  • LiFePO batteries have an excellent constant discharge voltage
  • LiFePo batteries use phosphates––as opposed to cobalt or nickel, which are supply-constrained and carry heavier environmental concerns
  • LiFePo batteries have a lower self-discharge
  • LiFePo batteries are very lightweight compared to SLA batteries
  • 3.2 V nominal output voltage means that four cells can be placed in series for a nominal voltage of 12.8 V, near ideal for most field radio gear

Any cons? Yes…while they’re lightweight, LiFePo4 batteries aren’t as compact as Li-ion battery packs.  But the primary negative here is the price.  At time of print, LiFePo4 batteries have the highest cost per Amp hour of the batteries discussed in this article. With that said, due to the excellent longevity of these batteries, the LiFePo may be the most cost effective option in the long term.

LiFePo4 battery systems sport built-in battery protection modules to address concerns like over-voltage and balancing.

How do LiFePo batteries stack up?

  • Price: One of the pricier options, when you include the battery and charger
  • Weight: Very light weight, but size tends to be larger than comparable Li-ion packs
  • Voltage: Excellent match for gear requiring 12V – 13.8 VDC
  • Longevity: Excellent. Thousands of charge/discharge cycles
  • Ease of recharging: Simple, using the provided charger (battery packs have a built-in charge controller)
  • Solar charging option: Bioenno sells charge controllers designed to work with LiFePo batteries, handy for the field

Without a doubt, the best-known LiFePo battery manufacturer in the world of ham radio is Bioenno Power. I’ve purchased their batteries exclusively and have been incredibly pleased with the quality, longevity, and performance of their products.

Choosing the right battery for you

Each one of these battery types have their pros and cons, and you can find lengthy, in-depth discussions online about the nuances of each battery chemistry. At the end of the day, however, what matters is which one best suits your particular application and provides your gear with the appropriate amount of voltage.

Here’s when I would reach for each of our types of batteries…

NiMH LSD AA batteries

WD8RIF uses Eneloop rechargeable AA batteries with his Elecraft KX3 field kit (Photo: WD8RIF)

If you’re willing to use a battery pack to run 8-12 cells in series to achieve your required nominal output voltage, Eneloop batteries are relatively affordable, lightweight, and of course, power an array of electronic devices in our world.

If you plan to use QRP power for short periods of time, these may suit your needs quite well. My buddy and Elmer, Eric (WD8RIF), has used Eneloop batteries to power his Elecraft KX3 for the majority of his Parks On The Air activations.

Of course, AA Eneloop batteries are also invaluable for those of us who have an arsenal of portable shortwave radios that accept AA cells!

Sealed Lead Acid Batteries

If you’re on a very tight budget and weight is less of a concern, SLA batteries are a great choice. They’re an especially affordable option if you plan to make a solar-powered battery pack since charge controllers are quite simple and affordable.

If you’re looking for a stationary back-up battery for home, these are an excellent choice, as long as you keep the charge topped up.

Li-ion Batteries

Backpacking or flying overseas, and size and weight really do matter? Purchase a Li-ion battery system. Li-ion cells and packs offer the highest energy density of any of the battery chemistries in this list. They’re incredibly compact––and as long as you use a quality charge controller with built-in protections, and you don’t damage or puncture an actual Li-ion pack––they should be quite safe, and you’ll be pleased with performance. Note:  Keep in mind some airlines have regulations about the size of Li-ion battery pack you’ll be allowed to carry on board, so do check before departure.

LiFePo Batteries

The 9V 3Ah Bioenno LiFEPo4 pack is very compact and pairs beautifully with the Mountain Topper MTR-3B as this particular transceiver prefers voltages at 12 volts and below.

If you’re looking for a simple, effective portable battery solution that is almost custom-designed to power radio gear, invest in a LiFePo4 battery and charger. I have everything from a 15 Ah 12V LiFePo4 battery that can power my 50 watt Mission RGO One transceiver, to a 3 Ah 12V pack I now use for 2-3 hours in the field at a time with my QRP transceivers. Bioenno has recently sent me a 9 V 3 Ah battery pack to test with my Mountain Topper MTR-3B––it’s incredibly compact, since it only needs three 3.2V cells in series. LiFePo batteries are also the ones I suggest for those who are new to the world of battery packs and want something that is hassle-free and simply performs.

 

I admit, I’m being transparent here about why I own a total of three LiFePo4 batteries from Bioenno Energy––they’re amazing and I know I can rely on them.

In summary…

…I would offer this final piece of battery-usage advice: whatever you do, don’t “cheap out” on your battery and charging system. No matter what chemistry you decide to purchase, buy the best quality you can afford. If using any variant of a Li-ion battery, heed my tale, and be sure any separate charge controllers you employ will protect your battery (and your home)!

And now…Go out there and have fun. I assure you:  when you take your radios––whether portable shortwave radios or ham radio transceivers––to the field, you’ll find you can escape all of the noises that so often plague us indoors. And out there, you, too, may find your radio bliss.

Chameleon Antenna Moving Sale

Many thanks to Don (W7SSB) who shares the following news from Chameleon Antenna:


WE’RE MOVING TO A NEW LOCATION!!

In August 2021, we will be at our NEW location, South of the airport in Sparks Nevada! The NEW location will be TWICE the size of the current one which will allow us to hire more people, increase production & inventory thus allowing us to ship faster!

To celebrate the event, we’re offering 15% OFF the following items.

CHA BOOSTER KIT
CHA DB VHF/UHF
CHA HUB KIT
CHA POWER COMPENSATOR
CHA QUAD ONE
CHA SPIDER ASB
CHA RFI CHOKE
CHA SPIKE MOUNT
CHA SS ADAPTER
CHA SS17
CHA UCM

USE THE CODE: MOVING2021

This promotion can’t be altered and/or combined with any other existing promotions and/or can’t be retroactive with previous purchases and/or promotions.

Click here to check out the sale items at Chameleon Antenna.

Activating Anderson Mountain: My first drive-up one point summit

As AA6XA wrote on his blog:

To quote the W4C association manager Pat, KI4SVM, “Anderson is a drive-up with no other redeeming qualities.” This perfectly describes the mountain. It is easy to get to, at the top of Tower Road, right off of Route 16. The road to the top get a bit rough in places, but is passable in any car.

He had me at “no other redeeming qualities”–!

I must admit that all of the summits I’ve activated so far have been pretty amazing: offering up spectacular views, wildlife, and wonderful hiking opportunities. All of them were also on protected public lands like state/national/county parks.

Anderson Mountain (W4C/WP-012)

Earlier this year, I made a spreadsheet of summits I planned to activate. Anderson Mountain was one of them because of its convenient location in my travels to visit family each week. I had also been saving it for the day that I planned to activate a nearby park–Tuesday, July 6, 2021 was that day!

Earlier, I had an amazing activation at Mountain Island Educational State Forest using the Yaesu FT-817ND, T1, and my speaker wire antenna. I completed Mountain Island in enough time I could also pop by Anderson Mountain for a quick activation.  It was literally a six minute detour from my route, if that.

The mountain is directly off of US 16–the main highway between Newton/Conover and Charlotte.

You turn off of the highway onto a dead end road that leads to the summit. About halfway up, it turns into a single lane privately-maintained road that, as AA6XA noted above, is rough but passable in any car (well, save a Lamborghini but I’m guessing most SOTA ops don’t own one of those!).

The road to the summit is a straight–there’re no confusing forks in the road and it’s impossible to get lost.

Once on top, you’re greeted by a few clusters of communications towers. This is actually pretty common sight with smaller one point summits because they typically have superb line-of-sight to populated areas and are easily accessible by vehicle.

When you look around, you can understand why Pat would say it has no redeeming qualities: towers, rusty transmitter buildings, razor wire on chain link fences, and litter all over the place.

Not the sort of spot that would inspire Ansel Adams.

Judgement call

It’s worth noting here that, unlike POTA, you’re not allowed to operate from a vehicle during a SOTA activation–even at a “drive-up” summit. There’s no such thing as a mobile SOTA activation.

Indeed, you’re not supposed to operate in “the vicinity” of your vehicle either (although, there’s no distance noted and I’m guessing this is on purpose to allow leeway and the op to make a judgement call).

I set up in a little island of trees in the middle of a road loop on the summit. While I wouldn’t call it a hike, I did walk the entire summit after arriving to check for other operating spots, but decided to set up near where I parked the car. In fact, it’s really the only safe spot I noted in the activation zone to park since the road is single lane and you would otherwise block access to one of the transmitter sites. I thought about parking further down the road next to one of the transmitter fences, but I felt like that would have been on private property.

Side note: SOTA forbids operators from trespassing on private property without the owner’s permission. I checked the road very carefully for “no trespassing” signs, but the only ones I found were to keep people out of and away from the fenced-in transmitter sites.

I also thought about trying to operate in a spot on that little island where I couldn’t see my car as easily in the cluster of trees–to remove myself from the “vicinity” of the car–but that would have been awkward, too and only separated me an additional 10-15 meters or so. I chose the option where others could see me and I could see them if, for example, a Duke Energy service vehicle approached.

I was fully outside of my car, though, and not using it to support my antenna or any equipment–another important factor.

Sometimes as an operator you have to make a judgement call when you arrive at a site to stay within the rules and the spirit of the program. I’ve never had a SOTA or POTA activation where I felt I was splitting hairs until this one. I decided that this was the best scenario to activate Anderson Mountain in a way that wouldn’t inconvenience other property owners, nor cause suspicion that might lead to a future no trespassing sign on the road. It was the safest set up and I’m willing to bet most previous activators did exactly the same thing. I felt it was within the spirit of the program.

Now where was I–? Oh yes…

Gear:

On The Air

Since I used the speaker wire antenna at Mountain Island, I used it on Anderson Mountain as well. I deployed the entire station within 5 minutes max: herein lies the advantage of using an arborist throw line, a shack-in-a-box transceiver like the KX2, and a simple wire antenna.

I first hopped on 20 meters CW, spotted myself to the SOTA network (mobile phone reception was superb, by the way) and started calling CQ SOTA.

Within three minutes I logged K6YK, KT5X, W5GDW, and K0LAF which already validated this SOTA activation.

Wow–validating this activation was, as my daughters used to say, “easy peasy lemon squeezy.” 🙂

I added WB6POT and N0RZ for a total of six stations on 20 meters within five minutes.

I then moved to 40 meters SSB and worked K8RAT, W4NA, and WN4AT all within about three minutes.

Finally, I moved up to the 17 meter band and worked F4WBN (our well-known French SOTA chaser) and K2LT.

Packing up my gear was as quick as setting it up.

Video

I did make one of my real-time, real-life videos of the entire Anderson Mountain activation with no edits. If you need a cure for insomnia, I encourage you to watch or listen to it:

At least one redeeming quality…

I mention in the video that some readers and subscribers have confessed that they feel SOTA is less accessible to them than POTA or WWFF.  I would have to agree that summit activations are much less accessible than park activations.

For one thing, there are flat regions on our planet that lack prominences that qualify for the SOTA program. If you live in the middle of a prairie state, you may have to drive a great distance to reach the closest qualifying summit (although you might have a number of POTA and WWFF parks nearby).

In addition, summit activating generally involves hiking–which is actually the motivating factor for many of us (certainly for me as I love hiking).

Some would-be SOTA activators have mobility issues, however, and simply can’t hike great distances with gear on their backs.

This is where “drive-up” summits like Anderson Mountain come in: they’re much more accessible for those with health considerations.

If you live in an area with SOTA summits, but haven’t attempted an activation because you can’t do strenuous hikes, connect with local SOTA activators and ask for a list of “drive-up” summits. There are many of these around–some, like Anderson, are accessible because there are radio towers on top, other are accessible because they’re on a park with accessible vistas, or some are even in a mountaintop neighborhood.

Thank you

I’d like to thank all of you for reading this field report and I’d especially like to thank those of you who contribute to QRPer.com via Patreon and our Coffee Fund. While my content will always be free and QRPer is very much a labor of love, your support helps me purchase gear and supports my radio travels. With that said, if you’re saving up for your first radio or need to invest in your own kit, I’d rather you support yourself!

My goal with QRPer is to champion field radio operations and encourage others to discover the benefits of playing radio outdoors!

73,

Thomas (K4SWL)


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Phillip discovers the TPA-817 B pack frame

Many thanks to Phillip (VE3OMI) who writes:

Hello Thomas,

[…]I came upon this interesting mount setup for the Yaesu FT-818 via Armando – KP4YO. I saw his setup on his QRZ page and was intrigued, as the rig seems to be able to stand up on its back side even with a pretty large whip installed.

(via KP4YO on QRZ.com)

Seems the gist of it is to bring all of the rear mounts and connections to the front.

Quite interesting and certainly looks “beefy”!

Product description from Armoloq:

The TPA pack frame provides a modular platform for configuring your Yaesu FT-817 and FT-818 into a quickly deployable base, mobile, field or mil style man pack configuration.

The concept was to design an effective, small form factor frame that when installed, would allow relocation of all rear inputs, minus power and ACC connection, to the front of the radio, provide standoff at the rear of the radio for permanent cable attachment, and also provide protection when used in the field.

The relocation platforms provide a sturdy mounting point for attaching commercial or mil type VHF/UHF whip antennas. All accessory mounts are interchangeable and can be oriented to suit your operating situation.

The TPA pack frame is a 2 piece frame that is secured to the radio via 8, side chassis mounts. The frame is CNC laser cut from 5052 aluminum and powder coated with a matte black finish. The TPA provides protection to the radio body and control head with a wrap around design while allowing access to the top oriented MODE and BAND buttons, as well as the battery compartment.

Click here for full details and photos.

Thank you for sharing this, Phillip! I’ve never seen this pack frame/cage before and I’m not even sure how I’d use it for the type of field work I do, but I’m willing to bet that it’s the perfect solution for those wanting an uber-rugged cage for Emcomm and/or as a manpack. I love products like this that transform gear into military-grade kit!

Anyone out there use the TPA-817 B? Please comment!

Portable Ops Challenge: September 4-5, 2021

If you’d like to participate in a contest that balances the playing field between fixed, high-power stations and QRP portable stations, you might take a look at the 2nd annual Portable Operations Challenge.

The POC will take place September 4-5 during three, 4 hour periods. The exchange is very simple: your 4 character Maidenhead Grid Square. You can even combine this event with a scheduled summit or park activation. 

This contest even includes prizes for the winners.

Check out the POC webpage for full details. I’ve pasted details from the POC page below:


PORTABLE OPS CHALLENGE

The Fox Mike Hotel Portable Operations Challenge is designed to optimize equal operating conditions for portable operating during a contest involving non-portable stations. The scoring allows and encourages regular home-based station operations to take part while offering a handicap-style scoring algorithm to be more equalized for portable stations. The approach is akin to the handicap index in the sport of golf. More difficult courses are scored with a higher slope value, indicating a greater challenge to achieve a normal par score of 72 on that course with a handicap of subtracting strokes for golfers who do not typically shoot as low a score as other golfers. A number of factors go into deriving the slope rating for a golf course but they represent the challenge that the course presents to each participant golfer and the golfer’s capability for playing the course.

The POC aims to make portable operations “on par” with more typical fixed-based operations while preserving the enjoyment of being in a new operating environment. Moreover, fixed-based operators can also easily participate in the action, challenging the handicapped-scoring for portable ops. Can the Super Station contester best the Little Pistol portable operation? If we use a scoring metric that reduces the advantages of fixed stations to that of pure radio sport operating, is there a chance that an efficient portable operator or team can come out ahead of the current winning contest station operators? That’s why this is called the Portable Operations Challenge!

Frank K4FMH

THEORY OF THE CONTEST SCORING FACTORS

Several aspects of fixed (permanent)-station contesting can be stacked in the operator(s) favor when compared to most portable operations. One is the use of greater RF power output. Another is a permanent tower with directional, gain producing beams. A third is that it is easier to have multiple transceivers and operators, allowing for a “per-transmitter production” that yields superior scores. A fourth is the mutual attractiveness for fixed-station ops to work other fixed-station ops and ignore the weaker (especially QRP) signals. The addition of having the full force of Internet communications (when allowed), spotting sources, better ergonomics for operating positions, food/drink conveniences, and climate-controlled shelter all add-up to give “course advantages.”

While some portable operations (an example can be some large Field Day teams) can meet or exceed the advantages to contesting identified above, the vast majority do not.

Our scoring metric equalizes some of these advantages. Four factors are used in scoring each contest operation submission. These are the same regardless of whether it is a single operator or a team of operators, unassisted or assisted through the use of operation spotting. These include:

a. Kilometers-per-watt (KPW). Using the Maidenhead Grid Square, the distance in miles divided by the reported power output in watts for the reporting contest participant.

b. Fixed (permanent) vs Portable operation (favoring portable).

c. Mode of contact: Phone vs. CW vs. Digital (favoring phone over CW over digital)

d. Number of transmitters in use (points X 1/t where t = # transmitters)

The logic underlying this metric is as follows:

The KPW metric will tend to equalize power used as well as antenna gain. The km-per-watt is computed per-contact using the centroid lat-lon of the Maidenhead grid square exchanged during the contact. Favor goes to the greater miles-per-watt which equalizes to some degree the antenna gain, power, and point-to-point propagation conditions. The MPW is the basic contact score. Fixed (permanent) station operators have their resident setup which gives an advantage over portable ops, although a team could replicate a Field Day setting with portable crank-up towers, amps, generators, and so forth. Favor goes to the portable operator. The amount of this multiplier can be adjusted much as a competitive “tuning parameter” in future contests.

All things being equal in a QSO, phone is most challenging, followed by CW and then digital (especially weak signal modes like FT8). Favor goes to phone first, CW second, and digital third.

The more transmitters shape the number of contacts so more transmitters get increasing decrements in the points awarded, regardless of the number of ops. This emphasizes the per-transmitter production rather than just the amount of equipment and number of operators. We are experimenting with what seems appropriate discounts for the number of transmitters in simultaneous so as to render a more equitable competition, favoring sport over equipment.

POC DATES

SEPTEMBER 4-5, 2021
CONTEST OBJECTIVE:
For portable and fixed stations to work as many other portable and fixed stations as possible during the contest
period.

CONTEST PERIOD:
The contest consists of three individual and separate 4-hour periods on September 4 & 5, 2021 UTC.

The sessions are:
Session 1: 0800 – 1159 September 4, 2021 UTC
Session 2: 1600 – 1959 September 4, 2021 UTC
Session 3: 0000 – 0359 September 5, 2021 UTC

Stations may be worked once per band and mode by session for a maximum of 15 contacts between stations per session. Duplicate contacts will be removed without penalty. Scoring will be done by each individual session. Participants may operate one, two or all three sessions. Overall champion will be determined by aggregating scores from the three separate sessions. The Individual with the highest aggregated score will be crowned Grand Champion. The single station with the longest distance in KM per watt will be the Distance Champion.

BANDS:
80, 40, 20, 15 and 10 meters

MODES:
CW, Phone (SSB), and Digital
Digital mode is any data mode that can transmit the required contest exchange. Cross mode contacts are not permitted.

EXCHANGE:
4-character Maidenhead grid square

SCORING:
Total score for the session is the sum of all QSO Values.

See Rules Document for official details.

943 Miles Per Watt with the Yeasu FT-817ND, Elecraft T1, and 28.5 feet of speaker wire

When it comes to parks, I haven’t picked up many new-to-me “uniques” lately.

In truth, though, I’ve put more effort into activating unique summits which takes more time to plan, plot, and activate. SOTA has taken a bite out of my park uniques, but I’m good with that because to me it’s less about my park/summit numbers and more about the exploration and outdoor radio time.

On Tuesday (July 6, 2021) however, I added one more unique to my 2021 park count: Mountain Island Educational State Forest (K-4858).

This park is actually a modest detour during my weekly travels, but I’ve never popped by for an activation. You see, unlike other state parks I visit, Mountain Island isn’t yet open to the public on a daily basis. On their website, they state that visits must be arranged in advance, so I reached out to them the morning of July 6 and they promptly replied, welcoming me for a visit and activation that very same day!

Off the beaten path

Since this state park isn’t yet open to the public, I didn’t see the typical brown highway signs pointing me to the park entrance, but Google Maps steered me right to the front gate where there’s a sign.

The gates were unlocked and open, so I pulled into the property and met with two of the park staff who were incredibly kind and accommodating. They were both familiar with the Parks On The Air (POTA) program which made it much easier for me to ask about spots where I could set up my station.

First, though, I wanted to know more about Mountain Island Educational State Forest so I asked ranger Laura about the history of the site.

Turns out, Mountain Island is the newest Educational State Forest in North Carolina and has been in the works for more than 20 years.

The Forest is a vast conservation area that protects 12 miles of shoreline on Mountain Island Lake in the Catawba River Basin. This lake is the primary drinking water supply area for Charlotte, Mecklenburg and Gaston Counties. She told me that one in 23 North Carolinians rely on this area for their source of water.

Much of the land was originally owned by Duke Power who put it up for sale in 1998. Conservation groups purchased the land from Duke’s real estate agency in 1998 and put it into a conservation easement. The land is actually in two counties (Gaston and Lincoln) and a portion in the city limits of Gastonia.

The NC Forest Service now manages the forest and supports the public-private partnership with the counties, municipalities, and conservation groups.

Mountain Island has been actively educating school groups and the public about the river basin and local flora/fauna for many years by appointment. Currently, a new education center is being built on the property and will soon be open to the public with regular business hours. Being so close to population centers, I imagine they’ll stay busy!

Shade

Park ranger Laura was kind enough to allow me to set up under a huge tree in front of their ranger station.

I was grateful for the shade: it was 92F (33.3C) and humid.

There were no picnic tables under the tree, but I happened to have two folding chairs in my car. I used one as a table and the other as a chair. I flipped over my GoRuck GR1 backpack to make a stable base for the Yaesu FT-817ND.

Gear list:

On The Air

I was super pleased to put the Yaesu FT-817ND back on the air. It’s been a while since I’d used it in the field because my review radios (TX-500, X5105, etc.) have taken priority.

I love the FT-817ND and believe it’s actually an exceptional transceiver for CW and SSB ops. The CW full break-in QSK is wonderful and I actually like the mechanical sound of the T/R relay switching (if you like pin diode switching, you should look the other way, though!). With the 500Hz CW filter installed, the front end is pretty bullet-proof, too!

This was the first time I had paired the FT-817ND with my 28.5 foot speaker wire antenna. The random wire antenna needs a good ATU to match impedance, so I employed the Elecraft T1 this time (soon I’ll also try the LDG Z-100A).

I had planned to do a little SSB work, but quickly realized I’d forgotten the FT-817ND microphone. A shame because this site actually has excellent mobile phone service so I could have spotted myself to the network. Next time–!

I started on 40 meters CW and worked ten stations in 21 minutes. That’s a perfect pace for me!

Next, I moved to 20 meters where I worked six more in 9 minutes.

I was incredibly pleased with how well the speaker wire antenna performed–especially on 20 meters.

From the Piedmont of North Carolina, I worked Montana, Texas, New Hampshire, and Italy with 5 watts into $4 worth of speaker wire.

I did a quick back-of-the-envelop calculation and discovered that I yielded about 943 miles per watt!

To be clear, IK4IDF did all of the heavy lifting in our contact with his 9 element Yagi, but still it’s awfully exciting to put DX in the logs with only fair propagation.

Video

Of course, I made a real-time, real-life video of the entire activation (save the set-up and take-down):

Click here to view on YouTube.

Onward and upward!

I packed up quickly because I had a SOTA activation planned that afternoon on Anderson Mountain. I’ll post a field report and video of that activation soon.

Rev 4 FT-817 Buddy Board

Also, I’m about to start soldering together G7UHN’s new Rev 4 FT-817 Buddy Board! Revision 2 worked wonderfully, but revision 4 now includes a CW memory keyer among other upgrades! (Woo hoo!)  All of the components are now in the shack–just a matter of soldering them together and programing the Arduino Nano. Andy, if you’re reading this, expect a call from me soon, OM!

Thank you!

I’d like to thank all of you for reading this field report and I’d especially like to thank those of you who contribute to QRPer.com via Patreon and our Coffee Fund. While my content will always be free and QRPer is very much a labor of love, your support helps me purchase gear and supports my radio travels. With that said, if you’re saving up for your first radio or need to invest in your own kit, I’d rather you support yourself.

My goal with QRPer is to champion field radio operations and encourage others to discover the benefits of playing radio outdoors!

Have a wonderful week!

73,

Thomas (K4SWL)


Do you enjoy QRPer.com?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

How to pack a compact Arborist Throw Line Storage Bag

Since last year, I’ve become a bit of an arborist throw line evangelist.  Arborist throw lines have made my wire antenna deployments so quick and easy compared with using monofilament fishing line or more complicated systems.

Since purchasing this arborist throw line last year, I’ve never looked back. The throw line never gets caught in tree branches, it’s reusable hundreds of times, and with it I can easily snag branches 50’+ above the ground to hang my wire antennas.

When I purchased my first arborist throw line, I also purchased this folding throw line packing cube:

It has a huge opening, is stable on the ground, and makes for an incredibly quick deployment and pack-up.

While the cube folds into a compact triangle, it’s a little too bulky for backpacks I use during SOTA and other trailside activations.

A smaller throw line storage bag

A few months ago, I purchased a second throw line for backpacking and this compact Weaver Leather throw line storage bag (note: Amazon affiliate link).

If I’m being honest, I was very skeptical about how easily this bag would work in the field. One of the reasons my throw line storage cube works so well is the opening is large allowing the line to deploy without tangling. Packing up is so fast because the line can be flaked back into the cube in a matter of seconds.

Before purchasing, I was afraid the compact throw line bag might get tangled when being stored in such a small stuff sack. I was really concerned packing the line in the storage bag might take too much time.

I purchased the the throw line bag and a new throw line from Weaver.

At home, I did a full break-in of the new throw line (attaching it to a tree, stretching it to full length, then pulling it for enough tension that some of the bend “memory” is removed). Then I attempted to simply stuff the line in my throw bag–it took ages, because the whole idea of a throw line is that it doesn’t easily tangle. The line wanted to “spring” from the bag as I tried stuffing it in.

A much better way: The “Figure 8” stuffing method

After a field activation this spring, I received a game-changing tip from one of my subscribers and I hope they step up to take credit! (Update: it was NW3S!–thank you!).

When stuffing the line back in the bag, wind it on your hand using the figure 8 method. I wind almost all of my lighter-weight cables and antenna wires in a figure 8 so that they deploy without getting tangled. I’ve been doing this for years and it works brilliantly.

I’d never thought about using this method on the arborist throw line. I was amazed with how effectively it worked.

Video demo

I made a short video (thank you for requesting this, Scott!) to better demonstrate how I pack my throw line storage bag now:

This method works amazingly well and I can usually pack the entire line within one or two minutes.

Again, I’m incredibly grateful to the subscriber who first suggested this method!