Tag Archives: Frank (ON6UU)

Frank builds the EGV+ Three Band QRP CW Transceiver Kit

Many thanks to Frank Lagaet (ON6UU) for sharing the following guest post:


The EGV+ Three Band Transceiver Kit

by Frank Lagaet (ON6UU)

Another EA3GCY kit has seen daylight.  The EGV+ is ready for you all.

It was beginning 2021 I got word a new kit from EA3GCY was ready and distribution could start.  After a successful build of the DB4020 I did not need much time to decide to buy this kit,  a week later the kit arrived at my QTH.  As weather was good I did not start immediately building but then winter kicked in, with snowfall and frost,  perfect time for some quality time and building the kit.

What do you get ? 

The kit has a general coverage receiver from 6 to 16MHz,  it has a keyer built in,  has RIT without limit,  requires only 0.25A on RX and smaller than 2A on TX.  Dimensions are 18x14cm and weight is 0.3Kg.   It is CW only, able to produce 8W on 40 and some 5-6 on 30 and 20.  The kit has an AB class amplifier.   Spurious is below -50DBc.  The receiver is a heterodyne type balanced mixer,  sensitivity is 0.2µV minimum and the CW filter is some 700Hz wide,  the AGC is on audio.   Furthermore the transceiver is equipped with both output for loudspeaker as for a headset or earbuds.

The kit arrived in a brown envelope and in that envelope I found a well-packed packet of plastic bags and the printed board well packed in bubble wrap.  Around that another layer of bubblewrap.  Safe!!

All plastic bags were checked,  all needed stuff was there, super,  well done Javier.

All components were installed in about 10 hours “relax max style”,  if you have built some kits already you can easily do this one,  all elements are far enough out of each other,  the board is not overcrowded at all.  Some attention is needed when soldering the IC’s and display but even that is a piece of cake.   Be careful when installing the SI5351 module.

Winding the toroids,  just follow what is in the manual,  it is not that hard to do,  I don’t understand what many find so difficult.  Just take your time and don’t rush into it.

I got the transceiver up and running quite quick. I didn’t install a speaker in the cabinet but decided to go for a transceiver where no speaker is in. If I want to use it on SOTA or GMA I don’t need the extra weight and can take earbuds with me.  So I installed the speaker connector on the board.

I made connections towards the CW key and CMD push button with jumper cables which fit exactly on the headers Javier supplies,  a little glue to keep them in place is also added afterward.  For easy operation I mounted the CW key connector and CMD pushbutton on the front of the transceiver.

Do to be able to withstand high power nearby stations,  I mounted the EGV+ in a homemade box which is made of printboard.  The box should be a Faraday cage to keep all QRM out.  If you buy a box, buy one in metal.  I added a laminated front and back which make the transceiver look kinda cool.   Now you can also buy a box from qrphamradiokits.

Alignment

The alignment is done on 40 meters:  crank up the volume and start turning the 2 coils (L1 and L2)to maximum volume.  Be careful to handle these with caution and don’t use metallic screwdrivers.  Connect an antenna after you’ve done that and do the alignment of the coils again for maximum volume.  Find a station on 40 and redo the alignment once more.  You should already have good results now.

P1 Set sidetone level to your liking.

P2 Set the hangtime of the relay after you’ve been on air–fast fingers will need a quick release. Set this to your liking.

P3 Connect a power meter between a dummy load and the transceiver,  set power on 40 to some 8 Watts.   Measure on 30 and 20 meters,  you should find some 6-7W there.  Don’t set the power to full if you want a long life for the final in the transceiver.  Mine is set for 6W on 20,  resulting in some 7.5W on 30 and some 8.4W on 40.  I think I will reduce even more.

P4 Set to max,  it is the RX-attenuator.

P5 Don’t pay too much attention to the signal meter,  mine is set at 6/8 of the potmeter’s range.  It is only an indication.  If you don’t want the S-meter then you can do a start-up sequence with the tuning knob.

These are in fact the alignments you need to do inside the transceiver.  You should also check Xtal calibration and BFO,  these are settings which you need to do in the set-up.  Don’t forget to write all down when you have maximised these settings. If you do a reset, all these values are erased too so be carefull.

The complete CW 3 bander

Well,  you get a 3 band transceiver which you build yourself,  it has RIT and XIT,  has 4 memories on the KB-2 keyer,  speed of CW can be set between 0 and 50WPM and you can set the KB-2 as a beacon which can be handy too.   The EGV+ provides you with 3 bands which are almost for certain insurance for QSOs when going on SOTA,  GMA or POTA.

You may have noticed some resemblance with the DB4020. You are right as some parts are the same on the board.   The designer worked on the same platform to make two completely different transceivers.  The result is twice the fun for kit builders.

I made a box myself since, at the time of ordering, there were no boxes available,  here’s the result.

The naked printboard transceiver.

After adding a laminated front to the trx,  it looks now like this.  You can see it is not made professionally but I like it.

The paper which is between the plastic was first cut out for the display before placing it in the plastics so giving an extra protection to the display.

I have also made a retractable stand for it,  when folded back it is next to the bottom of the transceiver,  when folded out the stand is under the front of the transceiver,  the retractable stand is also made out of printboard.

It’s an easy-to-make stand–take some old printboard and solder it together.   The pictures explain it all, I think.

Meanwhile, I already made a lot of QSOs with this small (16 X 20 X 6 cm) QRP transceiver.   The power out is better than expected and even reduced so all bands are within QRP regulations.

Finally, I’d like to say that I’m not sponsored to make this kit,  I don’t have any ties with the kit producer, nor do I gain money with building it.   If people would like to have this QRP kit built for them I’m willing to help out in populating the board and aligning it.  A ready made box is available with qrphamradiokits.   This also stands for the DB4020 which I made earlier.

The kit comes for 125€ without shipping costs.  Many European countries will have no shipping costs at all.  The enclosure comes for 50€ all included. This means you have a complete 3 band radio for about 200€.  In my eyes, this is a pretty good deal.

Info about the kit can be found here :   Home – Página web de ea3gcy (qrphamradiokits.com)

And here : EGV+ Three band CW – Página web de ea3gcy (qrphamradiokits.com)

Adding CW mode to the EA3GCY DB4020 Dual-band 40 and 20M QRP Transceiver Kit (Part 2)

Many thanks to SWLing Post contributor, Frank (ON6UU), who shares the following guest post which expands upon his previous DB4020 article:


The EA3GCY DB4020 transceiver now has CW mode

by Frank Lagaet (ON6UU)

After telling you all about the DB4020 SSB build I’m here with the CW part of the kit,  let’s say this is part 2.  At a certain moment Javier let me know the CW interface kit was ready for shipment and some week later it was delivered to my QTH.

Again, a well packed kit arrived in a brown envelope, components and boards well packed in bubblewrap.  I found even a board I did not expect which can hold a push button,  a switch and the connector for your morse key.  Javier thinks of everything it seems!

Unpacking the bubblewrap gave me this result,  all components in 2 bags.  In the bigger bag another 2 bags with 2 printboards,  one for the CW interface,  one for the CW filter.  Great !!  Checking the material bill resulted in all components there,  another thumbs up.

I started, of course, immediately building it because I wanted CW in the transceiver as soon as possible.  I don’t do much in SSB mode anymore and I already started missing CW on the DB4020,  so I started my KX3 to listen to while I was populating the boards.  I never thought CW was going to have this impact on me! …. ..

I started building the CW interface,  again starting with all small items.  I soon saw that the 2 relays which need to be soldered in were ideal to protect all components when the board is upside down, so I soldered them in very quickly.  I then soldered in all other components ending with the elco’s.

Next phase was the CW filter.  This board is small and came together in a blink of an eye, no problems there, the long legs of the 3 and 4 pin headers went in last.

The following day, I made all wire connections and soldered a 13pin connector,  leaving one pin out since I want to have the option to choose the width of the CW signal I’m listening to.  By cutting the FL CW + pin and adding an additional switch, I have now 500Hz or 2400Hz.  Great option, for very little effort and simple.  Another thumbs up here.

Now it was simply a matter of inserting the sub boards in the main board and all should be working.  And it did!  Hurray!  The 500Hz filter works perfectly,  filtering away all above or below stations nearby my operating frequency.

This is the result of the soldering work,  2 small boards which need to be inserted in the main board:

The CW interface still needs the 13pin header of which I cut one pin and mounted a switch to have the 2400Hz width.

The IC you see in the middle of the CW interface is the KB2 keyer which gives you several functions like 4 memories and beacon mode.  The 4 potmeters are used to set the level on 40 and 20 meters,  to set the delay between TX and RX switchover and to set side tone monitor level.   The keyer also provides functions as keyer mode A or B,  straight key function and can be set for speeds between 1 and 50WPM.   WPM speed can be set in 2 different ways.  Handy!

Here a picture of the CW filter inserted on the main DB4020 board.

The CW interface is inserted at the side of the main board,  notice the 2 wires which go to the switch to allow switch-over between 500 and 2400Hz.

(Wiring still needs to be cleaned up in this picture.)

Finally, the result:  a good working multimode QRP transceiver with 2 bands.  It should be possible to make close to medium range with it as well as DX,  even with QRP power.

And while I was building I also made a new key for this radio,  it is made out of a relay and cost nearly nothing,  looks good doesn’t it ?  hihi.

Homebrew key

The key, when in practiced hands (fingers hi), can do 50 WPM without a problem. My friend HA3HK does without blinking an eye at 40WPM with this kind of key and tells me that he can go faster if needed.  Me? I’m going it a bit slower.

Battery pack

As this radio is only using little power (0.4A in RX,  1 to 2A in TX depending the power you set it) I thought,  let’s make a battery pack for the radio.

The first plan was installing it in the box.  I did not do that because the batterypack is also powerful enough to feed my KX2 and other QRP transceivers. Since I can use it with all of them, a loose battery works out better for me.

I started with an old laptop which had a broken screen and some other malfunctions,  but still had a good battery,  although I needed the battery connector of course.  A piece of wood to mount the connector on was my next goal.  And since I still have another laptop using the same batteries, I can charge the battery without problems.  Simple, but good and it weighs much less than a gel cell battery.

The battery provides me with 12.5V and some 5Ah.  Enough to last for hours on RX and for sure good enough to activate 2 SOTA sites in one day.   It doesn’t look great but works great– that is what matters and to test it was more then good.  Next will be getting the battery pack in a nice box.  Better to re-use stuff than throwing it away I’m thinking.

I need to do something about the cover of the OLED display,  there is still some work there to make it look nicer.

Some video can be seen on YouTube :

Finallym I’d like to thank you all for reading my articles about the DB4020. I had big fun soldering, tinkering with the box, making the key, and batteryholder/batterypack.  My Hungarian friend HA3HK told me it looks a bit like a spy radio. …. ..

I also include one more time the link where you’ll find this kit :

https://www.qrphamradiokits.com/

73 TU ee

Frank

ON6UU


Thank you so much, Frank. No doubt, you had a lot of fun putting this excellent little kit together.

Implementing a filter switch was a fantastic idea and, obviously, not terribly difficult to do.

Based on the videos, the DB4020 has a low noise floor and very good receiver characteristics. I’m impressed that the CW portion of the radios has so many features as well, such as a memory keyer and beacon mode.

I also love how you reused that 5Ah laptop battery! I think that could almost give you a full day of SOTA activations at those consumption levels!

Thanks again for sharing this with us, Frank! We look forward to your future articles!

Frank builds the EA3GCY DB4020 Dual-band 40 and 20M QRP SSB Transceiver Kit

The following article first appeared on our sister site, the SWLing Post:

Many thanks to SWLing Post contributor, Frank (ON6UU), who shares the following guest post:


Building EA3GCY’s DB4020 QRP Transceiver kit

by Frank Lagaet (ON6UU)

In May, I discovered via a newsletter that a new kit was available from Javier EA3GCY in Spain.  I was immediately sold as this was a kit from my favourite kit producer and it has 2 bands–it will also be able to do CW and there also will be a CW filter.

After building 2 MFT’s from Javier which work without problems, I needed to have the DB4020.  The MFT’s are for 20 and 40 mtrs and do DSB (double side band).  I did put them in a not-so-graceful box but they do what they are intended for which is QRP phone (SSB).   They came together without problems so I expected the same for the DB4020–I knew for sure when I saw the board:  all through-hole components (except for some capacitors which are factory soldered) and a lot of space on the board.   The board has been silk-screened with clear indications on where all components have to come and the manual has very clear instructions where each component has to be soldered with referral to a quadrant.  The manual provides a 252 quadrant page so it is a piece of cake to find where each piece goes.

What do you get?

Javier provides you with all components which need to be installed on the board and, of course, the kit board.  The components come in small marked plastic bags and all is well-wrapped up in bubble wrap.  The board is wrapped separately and that is put together with the component wrap which is then again wrapped up in bubble plastic.  All goes into an envelope.  Very well packed I must say.

Here’s a picture of the bags with components:

The silk-screened board:

I started with the resistors since that’s the easiest way. After that, I did the capacitors.  I like to solder in all flat components first, so next were the diodes and IC sockets followed by the elco’s.  The transistors were next together with all relays.  As you solder in the transistors one also has to mount the cooling heatsinks,  these cooling sinks are high and are ideal to protect the coils one has to make,  they also protect the polystyrene caps (which I always find vulnerable) when the board is upside down.

Many kit builders are afraid of winding the toroids in kits–don’t be!  It is easy.  Just take your time and follow the instructions given by Javier in the construction manual.  In this kit the builder has to wind 8 toroids:  6 are a single wire which goes through the toroid body,  1 is a toroid with 2 different windings, and 1 has a twisted pair which goes through the final toroid.  Be sure to measure the wire you need per toroid as instructed in the manual.  Javier gives some spare, so you can be sure.  You will also see that on next picture where the legs of the toroids have not been trimmed yet.  Once done I still had some centimetres of wire leftover.

Picture of the toroids ready to be soldered in:

Finally all other parts and pin headers went in,  jumpers were immediately put on where needed.

As I’m using a military-grade plastic box, I have to break-out some components like the display,  tuning encoder,  volume and rx control from the board.  I also have put an on/off switch on the box and already have the CW KEY connector ready installed. I also installed a loudspeaker in the box.  The SI5351 board and the Ardiuno Nano are the final components which go into the board after installing all wires.

Picture of the board:

I intend to attach a CW paddle to the box made out of a relay.  A HWEF tuner (from EA3GCY) which I was planning to incorporate in the box is I think a bit overkill. That HWEF tuner is already in a nice little box and would be a pity to dismantle,  also I’m running out of space in the box…  Maybe I can fit in a 9-1unun which would then give me good results on both bands…?

Maybe I will install a battery pack in the same box.

The box with board installed:

The box completed front side:

Mind you,  it still needs some additional switches for the CW part of the transceiver.

73
Frank (ON6UU)

Video


Brilliant, Frank! I really appreciate the video as well–sounds like the kit produces smooth audio and should serve you well. No doubt, that military box enclosure will survive even the roughest field conditions!

Click here to check out the DB4020 kit at EA3GCY’s store.