Scott’s Self-Supporting Random Wire Antenna System

Many thanks to Scott (KK4Z) who shares the following post from his blog KK4Z.com:


K4SWL+ Antenna

by Scott (KK4Z)

On a recent post on QRPER.com, Teri KO4WFP was at a park in Florida that did not allow wires (or anything else) in their trees. Many POTA activators use End Fed Half Wave antennas which usually require one end in a tree. While it doesn’t happen at all parks, not being able to hoist your antenna could bust an activation.

I realized this may happen to me even though Georgia appears to be pretty lenient when it comes to such matters, I decided to switch to a park friendly antenna. I have been a fan of QRPER.com for quite some time and occasionally Thomas will repost something from my humble blog. That being said, it was K4SWL that got me started using a random wire antenna. My basis for my antenna was his speaker wire antenna which was a 28.5’ vertical antenna with a 17’ counterpoise. I used it a few times in that configuration and then started to modify it. I call this antenna my K4SWL+.

Some of the differences are I use a push-up pole to get the antenna in the air and at the base I use a 9:1 UnUn and a 1:1 Choke to keep RF out of the radio. A random wire antenna can feed RF back into the coax.

The wire is 14 ga. coated flex weave from The Wireman. This was left over wire from some other antenna projects. When I started this project I was using 22-24 ga. coated wire from SOTABeams but realizing there was no need to save weight, used the heavier wire. This allows me to dual purpose the antenna both for FunComm and EmComm. The insulator at the top is 3D printed with my call-sign and the base is U-type lugs. I find these are the best as I do not have to take the nut off of the antenna studs and if pulled hard will come loose instead of damaging the UnUn. I connect the antenna to the top of the push-up pole with a small Nite-eze “S-biner” size 1.

The 9:1 UnUn comes from Palomar Engineering. I have already created a blog post about how to build it and it can be found here: https://kk4z.com/2022/05/28/91-unun-qro/

Part of this blog post was to bring the different components together into one blog post.

The 1:1 Choke can be found here: https://kk4z.com/2022/08/15/lightweight-choke-balun/

I made two different types but I found the second works much better.

The project is pretty easy, the only caveat is to pay attention to what wire goes where. Putting it all together, you need a push-up pole, a Flag holder and maybe a trailer hitch extender. I will provide links below. The Flag Pole holder I used was not available so the link I used is a probable substitute. I have a trailer hitch on both my truck and my camper, When I pull into a campsite I have a choice of which hitch to use to keep my antenna clear from the trees. With the antenna up, I wrap the antenna wire around the push-up pole from tip to base, to prevent the wire from sagging near the tip. I attach the UnUn and choke to the mast with Stretch Velcro Straps. With my antenna up I have park employees drive by me all day along. Most of the time we exchange a friendly wave and occasionally one will stop by for a chat. I have had zero issues with this antenna at any of the parks I have visited.

How does it play? It has pretty much been a main antenna for just about all of my POTA activations. You can go back through my blog post and see what equipment I used with the antenna and the accompanying QSOMap. You do need an antenna tuner with this antenna and I typically use an LDG Z-11 Pro which I’ve had for 15+ years. The antenna tunes up from 80 to 6 meters and I have run the power as high as 65 watts. I normally run 10-35 watts depending on band conditions. I have tried it on 160 meters and while I can get a match, I don’t think much RF is leaving the antenna. I’ve made a few contact with it on 160. If you like to work 160 meters during a POTA activation, I suggest a Chameleon EmComm II with a 60’ antenna and a 50’ counterpoise. I run it as an inverted L with the apex about 20’ up my push-up pole and the end sloping down to something not a tree. Last time I tied it to the lantern stand at the campsite. It worked pretty well and I was able to make contacts on 160.

Video:

Click here to view on YouTube.

If you’re looking for an antenna that you can set up almost anywhere, with little or no hassles, take a look at this one. Don’t forget to check out the short video above. 73 — Scott

5 thoughts on “Scott’s Self-Supporting Random Wire Antenna System”

  1. The links to Scott’s web articles need to be reformed. As is, they fail. Remove the square brackets to make them work.

    THANKS for the EFRW suggestions. Personally, I prefer a well tuned EFHW so I don’t need a tuner. Either will get us on lots of bands and Scott’s packaging is very convenient for the no-trees use cases.

  2. I’ve sorted out the links with extra brackets. Thought I fixed all of those before, so thanks for the note!

  3. Scott, here’s an idea for you 🙂

    Connect two wires to the top of the antenna and have them sloping down (as wide as possible, using some rope), those will work as a “capacitive hat” making the antenna electrically longer, next use two counterpoise wires laid down on ground below the two “hat” wires and try the antenna

    You may also consider three “hat” wires and three counterpoises, in such a case the ropes holding the “hat” wires may also help keeping the support pole straight up 🙂

    Fiddling a bit with the hats and counterpoise lengths you should be able to find a decent match, the advantages of such a setup will be to virtually lengthen the antenna and to lower the takeoff angle 😀

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.