Tag Archives: IC-705

Icom publishes AH-705 antenna tuner details

Many thanks to Rob Sherwood (NC0B) who notes that Icom has published details regarding their new AH-705 antenna tuner which is designed to pair directly with the Icom IC-705 QRP transceiver.

Many Icom IC-705 owners have been waiting to learn more about the AH-705 before purchasing a dedicated portable ATU for their IC-705. Some of these details may help potential customers make a purchase decision.

Key specifications and features per Icom:

 

  • Covers the 1.8 MHz to 50 MHz bands

30 m, 98.4 ft or longer antenna: 1.8 – 54 MHz, 7 m, 23 ft or longer antenna: 3.5 – 54 MHz
* Depending on operating conditions or environments, the tuner may not be able to tune the antenna.

  • SO-239 antenna connector for 50 Ω antenna such as dipole or Yagi
  • “Terminal connector”, binding post socket adapter supplied for a long wire antenna

  • 2-way power sources using alkaline batteries (2 x AA cells) or external 13.8 V DC*
    * 13.8 V DC should be taken directly from an external power supply, not through the IC-705.
  • IP54 dust-protection and water resistance construction*
    * The connectors should be covered with an adhesive tape or a jack cover to prevent water seeping into the connection.
  • Full automatic tuning, just push the [TUNER] button on the IC-705
  • Latching relays used for saving power consumption
  • 190 × 105 × 40 mm; 7.5 × 4.1 × 1.6 in, 450 g; 15.8 oz* compact design
    * Battery cells are not included.
  • 45 tuner memories

Of course, I don’t have an AH-705 in hand to test yet, so there’s no way I can comment on performance.

Still, I can’t turn of the reviewer inside so I feel I can make some superficial comments assuming the specs don’t change.

Potential positives?

  • Complete integration with the IC-705
  • Could (potentially–?) be permanently mounted outdoors at the antenna feed point as a dedicated remote tuner
  • IP54 dust and water resistant
  • Power from internal batteries and an external DC source
  • It’s an Icom product, so I would expect excellent overall quality

Potential negatives?

  • Maximum wattage is only 10W, which I suppose is okay if you never put an amplifier between the IC-705 and the AH-705
  • Based on Icom specs, the AH-705 is larger than other portable ATUs at 7.5 × 4.1 × 1.6 inches. For example:
  • Some have noted pricing around $350 US price–that’s a premium for a portable ATU considering the Elecraft T1 is $180 assembled and many LDG models are less than $200. Of course, none of those ATUs have an IP54 rating, either.
  • Speculation here, but the AH-705 might only work with the IC-705 or Icom radios with similar ATU commands. One original pre-production prototype image of the AH-705 shows a power switch; the latest images do not. Like the mAT-705Plus, I’m not sure if the AH-705 can be turned on in order to tune only via RF sensing without essentially modifying a control cable to trick the ATU into powering up.

I was a little surprised to see that the AH-705 “only” has 45 tuner memories. In truth, I never really pay attention to this spec because I’m primarily a field operator. My radio sessions are only an hour or two long and I routinely pair my transceivers with a wide variety of antennas, so a portable ATU never has a chance to develop a complex tuner memory map for any given antenna. But as a reviewer, I try to step in other operators’ shoes so I see where this could be a slight negative for those who plan to use the AH-705 at home and connected to only one antenna. As a point of comparison, the mAT-705Plus has 16,000 tuner memories. Still, memories only help shave off a bit of the auto-tuning time. This would never have an impact on my purchase decision.

Biggest positive for me? IP54 rating

Since the AH-705 is designed to be dust and weather resistant,  it could be mounted at the antenna feed point. At home, perhaps it could act like an externally-mounted, remotely-controlled antenna tuner. I’m not sure what the maximum length of the control cable could be, but Icom Japan even lists a 16 foot control cable as an accessory. Of course, you would still need to follow Icom’s guidance about protecting the antenna, transmitter and control cable connection points.

Biggest negative for me? The size.

If the AH-705 specs are correct, it’s a little surprising Icom designed a portable ATU that’s this large. As you can see in the image above, it easily fits in the LC-192, but frankly since I’ve been an Elecraft T1 tuner user, I’ll notice that the AH-705 is 3.1″ longer, 1.6″ wider, and .7″ taller than the T1. It will certainly take up more backpack space.

Of course, unless I build an IC-705 control interface for the Elecraft T1, I can’t directly pair it with the IC-705 like I could with the AH-705. That said? I personally prefer pressing a tune button on the T1 and sending “QRL?” instead of hitting the PTT or CW key and allowing the IC-705 to kick in a continuous tune cycle for a few seconds. You might have noticed in some of my videos that when I tune to a new CW frequency, I’ll listen for activity, then tap the TUNE button on the T1 and send “QRL?” or “QRL de K4SWL”. By the time I’ve sent that string, the T1 has typically already found a match.

How will it perform?

I’ve got to assume the AH-705 will perform well. Icom tends to give their products thorough QC before shipping them to customers. I don’t anticipate any issues with the AH-705 as I did with the original maT-705, for example.

I’ll plan to test the AH-705 after it’s available.

For more information about the AH-705, check out the product page on Icom Japan’s website.

POTA Field Report: Two quick activations with the IC-705, mAT-705Plus, and CHA MPAS Lite

Back in the days of the National Parks On The Air (NPOTA) program in 2016, I made it a habit of doing multiple park activations in a morning, afternoon, or evening. I’ve done less of this in Parks On The Air (POTA) this year only because my time is more limited. Still, I love doing multiples because it gives me an opportunity to set up, play radio, achieve a valid activation, pack up, move on and repeat. Makes me feel like the only member of a pit stop crew. I love it!

Some call this RaDAR (Rapid Deployment Amateur Radio).

Monday (December 21, 2020) I had a block of time in the early afternoon to fit in up to two activations, en route to the QTH if all went well. While it wasn’t three, four, or five activations in an afternoon, I knew it would be a challenge to fit both in my tight schedule. If an activation took much longer than 30-40 minutes, I wouldn’t be able to complete both.

Since my goal was a quick activation, I reached for the Chameleon MPAS Lite vertical antenna which is so easy to deploy. I paired it with the Icom IC-705 and new mAT-705Plus ATU.

Gear:

Johns River Game Land (K-6915)

My first stop was Johns River Game Land. During hunting season, I spend less time in game lands because parking areas are full and even though I wear a blaze orange vest, I’d rather not be shot if I venture into the forest to set up. 🙂

Johns River has a very accessible large parking area off of a highway near Morganton, NC and I’ve never seen more than two vehicles there at a time.

I arrived on site just before noon on Monday and set up at the edge of the parking area. Unfortunately, this parking area is less than bucolic. Those who use this game land access point leave trash everywhere. You can tell groups gather with pickup trucks, make fire pits, drink beer, break bottles and throw their trash in the woods. Being a firm believer in Leave No Trace, this really, really gripes me.

I found a spot with the least amount of trash and set up in the gravel portion of the parking area so I didn’t drive over sharp objects or step on broken glass.

This is where the Chameleon MPAS Lite came in handy: I plunged its spike in the ground, unrolled the counterpoise, extended the antenna, and I was on the air in perhaps three minutes. No need to walk into the weeds and trees to hang an antenna.

I made a real-time, no-edit video of the entire activation with my iPhone. Since the iPhone was in use, I didn’t take a single photo at Johns River. That’s okay, though, because–as I mentioned–there wasn’t a lot there in terms of scenery. 🙂

Here’s the full video:

All in all, I worked 11 stations in short order. The video above approaches 30 minutes, but much of that time is dialog before the activation started. Toward the end, I also have the Mat-Tuner mAT-705Plus tune from 160-6 meters with the CHA MPAS Lite. If you’d like to skip directly to that bit, here’s the link.

I quickly packed my gear and set my sites on the next activation.

Lake James State Park (K-2739)

I arrived at Lake James State Park around 19:00 UTC and was on the air ten minutes later with the same equipment I used at Johns River.

I love Lake James because there are so many picnic sites and all have tall trees (for wire antennas) and gorgeous views. It doesn’t get any better for a POTA activator. Also, it’s a very short walk to the picnic spots. Since I recently sprained my ankle and can’t hike at present, this is a major plus. Like Johns River, I also have mobile internet access at Lake James which was a huge plus since the POTA spotting page wasn’t pulling spots from the Reverse Beacon Network like it normally does.

The Chameleon MPAS Lite 17′ vertical (above) served me well once again.

I worked 11 stations in short order.

Even though a vertical antenna isn’t optimal in the foothills of western North Carolina (due to poor ground conductivity), it had no problem sending my 10 watts across the US into California and up to Alaska. I still get a major thrill out of MPW (mileage per watt) like this!

I also made a short video at Lake James where I primarily talk about the trade off between convenience and performance with regards to field antennas. I also work a few stations on 30 meters:

Here’s a QSOMap of all of my contact from both Johns River and Lake James on Monday December 21, 2020:

Happy Holidays!

Today is Christmas Eve and I’ve no plans to do an activation (torrential rain, if I’m being honest, is dissuading me).

Instead, I’ll spend quality time with my family here at home. Same for Christmas Day. This evening, we’ll watch some our favorite Christmas shows/episodes: The Good Life (a.k.a. Good Neighbors), The Grinch Who Stole Christmas, and of course a Charlie Brown Christmas to cap off the evening.

I know 2020 has put a damper on gatherings with family and friends–our family has certainly felt it this year. With that said, I think the amazing thing about ham radio is the community we build over the air–it’s certainly been an important community for me, this year especially.

Thank you, radio family!

Here’s wishing you, your family, and your friends the very best of the season!

73,
Thomas

K4SWL/M0CYI

POTA Field Report: Lake Norman State Park (K-2740) December 14, 2020

Monday afternoon (December 14, 2020), after completing a long to-do list of errands, I found myself with a chunk of free time in the late afternoon. Of course, I like to fill free time with radio time, so I packed the car and headed to one of my favorite spots: Lake Norman State Park (K-2740).

I love Lake Norman because it’s only a 35 minute drive from my parents’ house (where I was that Monday) and it’s nearly ideal for POTA because they’ve a number of picnic tables widely spaced, and lots of tall trees–a perfect spot for wire antennas. It’s also a quiet location and has good “POTA Mojo”–meaning, I’ve never had difficulty racking up contacts there.

Gear:

I was the only person at the picnic area of Lake Norman that afternoon. No surprise as it was after 3:00 PM local and temps were on a fast downward trend after a front moved through earlier in the day.

You may be able to see the Emcomm III hanging in the tree.

I used my arborist throw line and deployed the Emcomm III Portable antenna with ease.

On the Air

I hopped on the air around 21:30 UTC and started calling CQ POTA. The Reverse Beacon Network (RBN) spotted me and the POTA website auto-spotted me under a minute. Within ten minutes, I logged 8 contacts on 40M.

I then moved to 20 meters and worked an additional 5 contacts within 15 minutes.

Since I had worked a total of 13 stations, I had three more than needed for a valid POTA activation.

Since I was using the amazing Emcomm III Portable random wire antenna, I decided to move to 160M just to see if anyone work work me on the “top band.”

To be clear, 160 is one of the least active bands in POTA for obvious reasons: few ops care to deploy an antenna that can tune up on 160M, and few POTA hunters have an antenna at home to work the Top Band. Although it’s not as efficient as a resonant 160M antenna, the Elecraft T1 and mAT-705 easily tune it and get a great match.

I called CQ for a few minutes on 1810 kHz in CW and N4EX replied. Woo hoo! My first 160M POTA contact as an activator.

I then moved up to the phone QRP calling frequency of 1910 kHz and called CQ for about 10 minutes. No dice. Since I spotted myself, about two stations attempted to make contact, but unfortunately, my five watts just couldn’t be heard.

I checked the time at this point and it was 22:30 UTC. The sun was setting over Lake Norman, so I started packing up.

It was then received a text from my buddy Mike (K8RAT). The message read, “80M?”

I thought it might be fun to work Mike on 80M, so I re-connected the antenna and tuned up on 3538 kHz.

I think I called CQ once, and Mike replied with a strong signal. We had a nice exchange and when we sent our 73s, I heard a few stations calling me. Of course…the RBN picked up my CQ for Mike and the POTA site spotted me.

To be clear: it’s next to impossible for me to cut an activation short when I have hunters actively calling me, so I started replying.

Getting late…

Turns out, 80 meters was on fire. In 15 minutes, I logged 17 more stations–from Florida to Ontario–with 5 watts.

Next thing I know, it’s dark. Like, pitch dark…

My iPhone struggled to make this photo look brighter without the flash engaged.

Side note: someday, remind me to write a post about how one of my earliest National Parks On The Air (NPOTA) activations carried on until it was pitch dark outside and how that one activation forever changed how I pack my gear. In short: if you’re in the field and you aren’t intimately familiar with your gear and how its packed–even if you have a headlamp–there’s a good likelihood you’ll leave something behind.

It then hit me that Lake Norman State Park closes at sunset in the winter.  Doh!

Friendly park rangers

I finished my last exchange (with W3KC) and sent QRT despite a few others still calling me.

 

As I quickly powered down the IC-705, I noticed a truck pass by slowly on the road behind me. He drove to the end of the road then turned around and stopped behind me. I knew it was a park ranger doing final rounds.

He walked down to my table with flashlight in hand and I greeted him with an apology as I quickly packed up my gear. He was incredibly kind and encouraged me to take my time. He also saved me a trip to the car to grab my headlamp by illuminating the area with his Maglite flashlight/torch.

The park ranger asked a number of questions about ham radio, POTA, and the equipment I was using as I packed up. He told me he’s always found it fascinating and had met other radio amateurs at the park doing activations. I gave him my contact info and I hope he considers checking out the world of radio.

Because I’m meticulous about how I pack (again, lessons learned from the past) I had no issues in low light and left nothing behind.

I drove out of the park at exactly 6:00PM which is the park’s closing time. I was happy, at least, that I hadn’t delayed their closing!

All-in-all, it was a very fun activation–so much fun, I lost track of time. I logged 30 stations all over North America on four bands with 5 watts.

Have you ever found yourself operating and packing up in the dark? Any stories to share or advice? Please comment!

A simple 3D-printed foot for the Icom IC-705

A number of readers have asked about the small foot under my IC-705 in recent POTA field reports.

One of my biggest criticisms of the IC-705 is that it has no built-in foot to tilt the radio for an optimal operating position. On the other hand, it does have a number of attachment points on the bottom including a standard tripod mounting point and several 4mm points.

Shortly after I received my IC-705, I checked Thingiverse knowing a clever ham would have designed some sort of leg or tilt stand.

One of the first designs I found was the most simple: this foot by “Viktor39” that attaches to the bottom of the IC-705.

It prints quickly and uses very little material (no support structure). Mine is made of orange PLA (because that’s what my daughters had been using), but I’m sure ABS would be a better choice.

You’ll need two M4 x 10mm screws to attach the foot to the bottom of the IC-705; mine have hex socket caps.

I’ve found that the foot is small enough that I never need to detach it even in transport.

Click here to view on Thingiverse.

Curt builds an Icom IC-705 control interface for his Elecraft T1 ATU

Many thanks to Curt (WU3U) who recently contacted me and mentioned he had built an IC-705 control interface for his Elecraft T1 ATU. This is a homebrew project based on others’ work and uses the FT-817 control port on the side of the T1 tuner.

I asked Curt if he could share a little more about his tuner to post here on QRPer:

Hi Thomas, I can’t take credit for the interface, as a guy in Japan designed it. When I built mine the entire instructions and notes for code for the PIC controller were in Japanese. I used Google translate to translate all of the information and I was able to successfully program the PIC chip and build the circuit. He has since released the details and code in English.

There are two designs: one with an on/off switch, and a newer version without an on/off switch that has auto power save. Both circuits are the same but the software for the PIC chip is different. If you build the one without the on/off switch there is a very specific sequence of connecting and disconnecting the device and it’s my opinion that the one with the on/off switch is the version that makes more sense to build. It shouldn’t matter which order you connect everything up and you simply throw the on/off switch to turn the device on and off.

Building the interface takes an understanding of a fairly simple electronic schematic and acquiring the parts. You also have to have a PIC programmer and the software to write his .hex file into the PIC controller chip.

The parts for the interface are all very common parts. The resistors are standard values. My build cost me about $30 in parts but I had to buy many of them in bulk from Amazon like the enclosures, switches and 3.5mm jacks and circuit boards to name a few. Individually the parts were $30 but my bulk order cost me much more. I also had to buy a PIC programmer for $25 and figure out what software I needed to download to program the PIC chip with the author’s code. It takes an experienced builder about two hours to build the device but it’s not out of the realm of a semi-novice as long as they can get the PIC chip programmed.

Here is the original code using the on/off switch. Everything is now in English:
https://amateur-radio.cocolog-nifty.com/blog/2020/11/post-1eb3cf.html

Here is his newer version with the same circuit design eliminating the on/off switch by using a different PIC program allowing the interface to have auto power shutdown (low power standby) but there is a specific order for connecting and disconnecting the interface. With this version there is still drain on the battery but the designer thinks that drain is less than the normal self discharge of the battery. I feel that any discharge combined with the self discharge of the battery will be more discharge than using the design with the on/off switch.
https://amateur-radio.cocolog-nifty.com/blog/2020/11/post-591d17.html

Video

I think this is a brilliant project and certainly one worth considering for those of us who already own an Elecraft T1 ATU and would like full control from the IC-705.

Thank you for sharing these details, Curt!

 

POTA Field Report: Lake James State Park (K-2739) with the Icom IC-705 and CHA MPAS Lite

Monday (November 16, 2020), I made a detour to the Catawba River access of  Lake James State Park (K-2739) to try a late morning POTA activation.

I didn’t plot this activation in advance, so had to work with what I had in the trunk/boot of the car.

I did a quick inventory and found my Chameleon CHA MPAS Lite vertical antenna packed and ready to deploy. (I always have an antenna tucked away in the car because…well, because!)

In terms of radios, I had the Icom IC-705 and Elecraft T1 antenna tuner packed as well. Woo hoo! A perfect combo! Let’s go!

Gear:

It was blustery and cold Monday morning due to a front that moved through during the night, so it was no surprise that the picnic area was completely void of (sane) people.

I found a picnic table on the bank that was relatively sheltered from some of the stronger gusts moving across the river. It was still quite windy, though, so I propped the MPAS Lite field pack on the table to provide a bit of a wind break for my log book.

Setup was quick. I don’t think I needed more than 4-5 minutes to have the CHA MPAS Lite deployed. This is one of the advantages of field portable verticals. The disadvantage? Verticals aren’t the most effective antennas in this part of North Carolina where ground conductivity is so poor. Still…I knew I could at least grab my ten needed contacts to have a valid POTA activation.

On the air

I won’t lie: it was slow-going.

For one thing, it was 11:00 local on a Monday morning–not exactly a prime time for a park activation.

I first tried making some SSB contacts on 40 meters and spotted myself on the POTA network. I managed to log 5 hunters in 30 minutes. With patience and time, no doubt, I could log ten SSB contacts, but I didn’t have time to wait, so I moved over to CW.

Oddly, the higher HF bands were in better shape than 40 meters that morning. One of my first contacts was NL7V in Alaska on 20 meters. A most impressive contact with 10 watts into a vertical.

I was on the air a full hour and did manage to log a total of 10 contacts. I’m certain if I would have deployed a wire antenna I would have had even better luck. Indeed, had I thought about it in advance, I could have actually deployed the MPAS Lite as a random wire antenna. (Doh!) That’s one of the great things about this antenna system is that it can be configured so many different ways.  Next time…

Still…I thoroughly enjoyed my time at Lake James State Park. I’ll make this detour again in the near future.

The Icom IC-705 continues to prove its worth as a superb little POTA transceiver!

Parks On The Air 101: Some real-time, real-life videos of a typical POTA activation using the Icom IC-705

On Monday (October 19, 2020) I received an inquiry from Dale (KI5ARH) only an hour or so before packing up my radio gear to activate Lake Norman State Park (K-2740).

Dale is interested in using his recently acquired Icom IC-705 to get involved with Parks On The Air (POTA) and play radio in the field.

What’s in my field kit

Dale was curious about all of the components of the field kit I use with the IC-705, so I made this video:

Equipment links:

Since I had already set up my phone to record the video above, I decided to make a couple more.

I thought there might be some value in making real-time videos showing what it’s like operating CW and SSB during a POTA activation.  The videos have no edits and haven’t been trimmed.  It’s as if the viewer were there at the activation sitting next to me at the picnic table.

Operating CW with the IC-705

After setting up my station, I first started on the 40M band in CW. I meant to start the camera rolling during tune-up, but forgot to hit record. The video begins after I’d made a few CW contacts, but shows what it’s like changing bands and relying on the Reverse Beacon Network (RBN) to pick me up then the POTA website to auto spot me.

Note: to be automatically spotted by the RBN, you must schedule your activation via the POTA website in advance, or have been already spotted by yourself or someone else, so the system will know to look for you.

My video cut off abruptly due to a low battery message. I had to give my iPhone a quick power charge to make the next video.

Operating SSB with the IC-705

After operating CW for a while, I plugged in the hand mic that ships with the IC-705 for a little SSB action. My main goal with this video was to show how I call CQ and use the voice keyer memories in order to manage the field “work flow” process.  I also speak to how important it is to either self-spot or have a friend spot you to the POTA network while operating phone.

I spent so much time setting up and running the camera, I wasn’t actually on the air for very long, but I easily managed to achieve a valid activation and had a lot of fun in the process.

I’m not a pro “YouTuber” as I say in one of my videos. I much prefer blogging my experiences rather than “vlogging,” I suppose.

Still, I think I’ll do a few more “real-time” videos of POTA activations and speak to the various techniques I use to activate parks. Since these videos aren’t edited for time, they may not appeal to the seasoned POTA activator or QRPer–that’s okay, though. My goal is primarily to assist first-time POTA activators.

Have you been activating Parks or Summits lately?  Do you have any advice or suggestions I failed to mention? Or do you have suggestions for future topics? Please comment!

POTA Field Report: Pairing the Icom IC-705 with the Elecraft T1 and CW Morse Pocket Paddles

The new CW Morse “Pocket Paddle.”

On Wednesday, October, 14 2020, the weather was gorgeous so I decided to make an impromptu POTA activation of Pisgah National Forest and the Pisgah Game Land (K-4510 and K-6937). These sites are the closest to my QTH and only a 15 minute drive (in fact, I can even hike up to the same trail network from my back yard).

My canine companion, Hazel, jumped into the car before I could even invite her to come along.

We drove to the trailhead, parked, and hiked a short distance into one of my favorite spots where it’s relatively flat, with lots of tall trees and almost no foot traffic from other hikers.

This activation gave me an opportunity to use the Icom IC-705 in more of a “backpack” setting since I hiked in with only my pack, Hazel, and my folding three-leg stool. Up to this point, I’d only used the IC-705 on picnic tables and flat surfaces since it can’t easily fit on my clip board like my MTR-3B, KX2, and KX1 can.

The activation also gave me a chance to evaluate a new product sent to me by the CW Morse company: their “Pocket Paddle” designed specifically for portable operations.

After reaching the site, I easily deployed the EFT-MTR antenna using my arborist throw line.

I decided to set up the Icom IC-705 much like I did the lab599 Discover TX-500 when I took it on hikes: mount the radio above the front pocket of my Red Oxx C-Ruck backpack.

The arrangement works quite well–I simply sit on the stool in front of the pack and hold my simple logging notepad and paddles on a clipboard.

While this particular site is great because it’s so accessible to me, the negative is it’s deep down in a valley surrounded by high ridge lines. I feel like this does have some impact on how well my signal travels.

Wednesday, it took nearly 50 minutes to rack up a total of 12 contacts in CW mode.  I never bothered with SSB/phone because this site had no cell phone service and, thus, there was no way to spot myself on the POTA network.

That’s okay, I felt pretty chuffed about racking up 12 contacts with 5 watts and a wire! This is what field radio is all about, in my opinion.

Loving the Elecraft T1

The Elecraft T1 ATU pairs beautifully with the Icom IC-705.

After a little falling out with the mAT-705, I decided I wanted to try other ATUs with the IC-705. I used to own an Elecraft T1 ATU and loved it, but I eventually sold it for a song to a friend since all of my field rigs at that point had internal ATUs.

I reached out to Elecraft and they sent me a T1 on loan to give it a go.  I’d forgotten how much I love this simple, effective ATU.

Even though the EFT-MTR is resonant on 40, 30, and 20 meters, moving to the 30 meter band requires lowering the antenna, pulling off an SMA cap on the coil, then re-hanging it.  Not a big deal at all, really, but it’s so much easier to simply press the tune button on the T1 and have it match 30 meters without going through the normal process.

CW Morse Pocket Paddle

I also thoroughly enjoyed using the CW Morse “Pocket Paddles.” I’m not sure when they’ll be available to purchase (perhaps they are already?) but I can highly recommend them.

The paddle action is field-adjustable and even though there’s an Allen wrench built into the paddle base, the machined screws are easy to twist by hand.

They feel very sturdy, too, much like the other CW Morse paddles and keys I’ve used.

I believe the Pocket Paddles are going to permanently pack with my IC-705!

The Icom IC-705 might be a ‘Holy Grail’ portable QRP SSB transceiver

While visiting my parents this week in the Piedmont of North Carolina, I took some time Monday afternoon to take the new Icom IC-705 to field and activate Lake Norman State Park (K-2740) for the Parks On The Air (POTA) program.

So far, most of my time with the IC-705 has been in CW mode but a number of my readers have been asking about SSB operation and performance.

My goal for this park activation was to give the IC-705 a proper shake-out on SSB.

Set-up

The activation was very much impromptu–I only decided I could fit it into my day an hour before my start time. In addition, while it wasn’t raining per se, there was a very heavy mist/fog that, at times, felt like a light sprinkle/drizzle.

I packed and planned on using my IC-705, mAT-705 external ATU, and Vibroplex End-Fedz EFT-MTR wire antenna.

I had an issue with the mAT-705 ATU (read more here), so opted for my trusty and incredibly capable Emtech ZM-2.

I did begin the activation in CW and quickly racked up a dozen or more contacts in short order after spotting myself. One of the great things about Lake Norman State Park is it’s one of the few locations I activate these days with proper cell phone coverage for mobile internet so that I can update my own activation spots on the POTA site.

I also moved up to 20 meters and switched over to my recently (re)acquired Elecraft KX1 (FYI, I named her “Ruby” so no way will I sell her again).

I quickly snagged two states (Iowa and Kansas) with 1 watt of power from the KX1’s internal AA cells, then 20 meters fell silent, so I moved to 30 meters to work a few more stations.

SSB on 40 meters

I then moved to the 40 meter band and decided to record a quick video after spotting myself on 7197 kHz.  I wasn’t expecting such a productive mini pile-up.

As you can tell from the video, I had my hands full trying to hold my phone/camera, log, and manage the hand mic. Note, too, I prefer not hooking up the speaker portion of the microphone because audio from the IC-705 internal speaker is far superior:

I operated SSB for a good 30 or so minutes and was busy with contacts thanks to all of those excellent POTA hunters.

IC-705 Voice Memory Keyer

Before packing up, I remembered that my buddy Dave had asked me to make a video showing how I use the IC-705’s voice memory keyer, so I moved up to 20 meters (which you’ll see was pretty much dead) and recorded this.

Doh! I had the SSB position in LSB instead of USB! Thanks to one of my YouTube viewers who noticed this. I had been tinkering with mode settings earlier while evaluating the rig. No worries, though, this was more a demo of the memory keyer–check out SSB operation in the video above.

I was actually very relieved 20 meters was dead because I’m terrible at managing a camera, a tablet, and a microphone all at once!

The Icom IC-705 is an SSB champ

Photo taken at South Mountain Game Land last week.

Despite the fact that I was using the default microphone settings and had not even touched the TX EQ or compression, I received no less than three unsolicited compliments about my audio during this activation.  That is probably a personal record.

No doubt, the IC-705 is a very capable rig for QRP SSB where audio quality is essential.

On top of that, the eight voice keyer memories are incredibly useful when activating a park, a summit, or even running a contest where you could truly automate your exchanges.

Have you been using the IC-705 in the field? What are your thoughts? Do you have any questions? Please feel free to comment!

MAT-TUNER mAT-705 woes

UPDATE: Mat-Tuner released the latest updated and upgraded version of the mAT-705 in December 2020. It’s called the mAT-705Plus. Click here to read my initial review of the mAT-705Plus. Note that the following article pertains to the original mAT-705 which is no no longer being produced, but still available for sale (at time of posting) both new and used.

Last week, I posted a review of the Mat-Tuner mAT-705 antenna tuner that is designed to pair with the new Icom IC-705 transceiver.

My initial assessment was very positive, but since then the shine has worn off. I’ll explain…

On Monday, I took the IC-705 and mAT-705 to the field for a little Parks On The Air (POTA) fun.

The Par EndFedz EFT-MTR triband (40/30/20M) antenna

Enroute to the site, I thought it would be a good test for the mAT-705 to attempt to tune the excellent EFT-MTR antenna (which is resonant on 40, 30, and 20 meters) on all bands above 40 meters.

After arriving on site, I very quickly deployed the EFT-MTR antenna using my throw line. I then hooked the EFT-MTR up to the mAT-705 ATU and connected the ATU to the IC-705.

After turning on the IC-705, I opened the menu screen and tried to engage the mAT-705 ATU. Unfortunately, the ‘705 didn’t recognize the tuner. I double-checked to make sure the control cable to the mAT-705 was secure–it was. After some head-scratching, I realized I must have left the ATU’s mechanical power switch in the “on” position while using it a few days prior.

This evidently depleted the mAT-705’s internal 9V battery. What a bummer!

I bragged about the mAT-705 in a previous post because, frankly, it is a very capable ATU–quickly finding matches from 160 to 6 meters on my random wire field antenna and horizontal loop antenna at home. It also has an incredibly sturdy aluminum enclosure.  It’s a very capable ATU in terms of quickly and efficiently finding matches and, superficially smacks of superb build quality.

Issues

But if I’m being honest, my love affaire with the mAT-705 ended Monday due to a number of discoveries.

9 volt batteries

The mAT-705 next to the IC-705

According to Mat-Tuner’s product description, the mAT-705:

“[I]s powered by an internal standard 9 volt alkaline battery. Power saving technology inside the tuner allows the use of the unit for months without replacement. No battery power is consumed by the unit when powered off.”

Turns out, they mean it saves power only with the mechanical power switch turned “off.”

This, in turn, means that the user must remember each time they use the mAT-705 to flip the mAT-705 mechanical switch off.  If left in the “on” position by accident, even with no connection to the IC-705 and while not in use, it will deplete a 9V cell in a matter of a few days.

This is a significant issue, in my opinion, and is compounded by a few other design choices:

Complicated battery removal

There is no “easy access” to the mAT-705 battery. The user must use a supplied (standard) Allen wrench and unscrew the rear panel from the chassis.

As we mentioned in our previous post, Mat-Tuner actually has a procedure for opening the case and replacing the 9V battery in order to prevent the LED illuminators from falling out. I followed this procedure to the letter, yet the illuminators still fell out. They simply aren’t secured properly and would be very easy to lose if replacing a battery in the field.

The LED illuminators

Once open, you discover that the 9V battery’s holder is a piece of double-sided tape. Seriously:

The mAT-705’s 9V battery holder

In addition, the ATU board essentially “floats” in the chassis secured in slide-in slots. The problem is the back panel–which you pull to remove the board–is only secured to the ATU board with three wired solder points.

Even when I lay the board down carefully, gravity will bend those BNC connections.

I can’t imagine this holding up with multiple battery replacements.

No external power port

Given that battery removal will take a user at least 5 minutes, I find it a little surprising that there’s no external power port.

It would be no problem at all for me, if the 9V battery died, to simply hook the mAT-705 up to my portable DC distribution panel like I can do with other external ATUs. But since this isn’t an option, you’re simply out of luck in the field. Better carry spare 9V batteries!

Where the lack of an external power port is really an issue, though, is for mAT-705 users in the shack. If the IC-705 becomes one of your main radios, you’ll have to be very disciplined to turn it on and off each time you use it, else you’re going to be replacing a lot of 9V cells.

Command connection to the IC-705 is basic

It seems to me that if you build an antenna tuner specifically to pair with a radio via a dedicated control cable, the tuner could potentially:

  • derive power from the transceiver
  • or at least be told by the transceiver to turn completely off when not actively in use. Especially since once a match is found, it’s locked into position even if the mAT-705 has no power.

The mAT-705 can’t do either.

Is it a good ATU? Yes. But inside it could be better.

As I said above, my original review stands in terms of the mAT-705’s ability to match antennas, I think it’s brilliant.

But I can no longer recommend the mAT-705 until some of these design shortcomings are addressed.

I’ve never owned a portable ATU that required so much discipline from the user in order to preserve the battery. I’ve also never owned one that was so fragile internally. Most portable ATUs *only* turn on when finding a match and then either “sleep” or turn off when not in use.

And portable ATUs like the Elecraft T1, for example? Even have a convenient battery compartment for easy removal. (And, oh yeah, the T1 will run ages on a 9V!)

The Elecraft T1 ATU 9V battery compartment

To add insult to injury, it’s one thing to discover that your mAT-705 ATU eats 9V batteries if left on but not in use, but it’s quite something else to discover your $220 ATU’s 9V battery is held in with a piece of double-sided sticky tape.

How long could this possibly function if you’re replacing batteries frequently in the field?

My hope is that Mat-Tuner will sort out this design and re-introduce the mAT-705 to the market. I’ve heard so many positive things about other Mat-Tuner models which is why I wanted to try one out with the IC-705.

Mat-Tuner ATUs are sold by respected retailers in the ham radio world (like Vibroplex, who loaned this model for review) so I expect they’ll address these concerns in the coming months. I’ll certainly post all updates here on QRPer.

Until then, I have to recommend skipping the $220 mAT-705 and instead purchasing the excellent ($160 kit/$190 assembled) Elecraft T1.